Skip to main content
Log in

Insights into the effect of substrate adsorption behavior over heme-like Fe1/AC single-atom catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Unraveling the substrate adsorption structure-performance relationship is pivotal for heterogeneous carbon supported metal single-atom catalysts (M1/C SACs). However, due to the complexity of the functional groups on carbon material surface, it is still a great challenge. Herein, inspired by structure of enzymes, we used activated carbon (AC), which has adjustable surface oxygen functional groups (OFGs), supported atomically dispersed Fe-N4 sites as heme-like catalyst. And based on a combination of scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy, Fourier transform infrared (FT-IR) characterizations, kinetics experiments and density functional theory (DFT) calculations, we revealed the effect of substrate adsorption behavior on AC support surface, that is, with the increase of carboxyl group in OFGs, the adsorbed 3,3′,5,5′-tetramethylbenzidine (TMB) molecular increased, and consequently the substrate enriched on AC surface. Such carboxyl group as well as Fe-N4 active sites synergistically realized high-efficiency peroxidase-like activity, just like the heme. This work suggests that simultaneously constructing metal single-atom active sites and specific functional groups on carbon support surface may open an avenue for engineering metal-support synergistic catalysis in M1/C SACs, which can further improve catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    CAS  Google Scholar 

  2. He, Y. H.; Liu, S. W.; Priest, C.; Shi, Q. R.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524.

    CAS  Google Scholar 

  3. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    CAS  Google Scholar 

  4. Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

    CAS  Google Scholar 

  5. Zhang, L. L.; Zhou, M. X.; Wang, A. Q.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733.

    CAS  Google Scholar 

  6. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    CAS  Google Scholar 

  7. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    CAS  Google Scholar 

  8. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J., Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    CAS  Google Scholar 

  9. Kaiser, S. K.; Fako, E.; Manzocchi, G.; Krumeich, F.; Hauert, R.; Clark, A. H.; Safonova, O. V.; López, N.; Pérez-Ramírez, J. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 2020, 3, 376–385.

    CAS  Google Scholar 

  10. Qi, H. F.; Yang, J.; Liu, F.; Zhang, L. L.; Yang, J. Y.; Liu, X. Y.; Li, L.; Su, Y.; Liu, Y. F.; Hao, R. et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nat. Commun. 2021, 12, 3295.

    CAS  Google Scholar 

  11. Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, 1905994.

    CAS  Google Scholar 

  12. Zhang, Z.; Liu, W. G.; Zhang, Y. Y.; Bai, J. W.; Liu, J. Bioinspired atomic manganese site accelerates oxo-dehydrogenation of N-heterocycles over a conjugated tri-s-triazine framework. ACS Catal. 2020, 11, 313–322.

    Google Scholar 

  13. Feng, S. Q.; Song, X. G.; Liu, Y.; Lin, X. S.; Yan, L.; Liu, S. Y.; Dong, W. R.; Yang, X. M.; Jiang, Z.; Ding, Y. J. In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nat. Commun. 2011, 10, 5281.

    Google Scholar 

  14. Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

    CAS  Google Scholar 

  15. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  16. Sun, T.; Mitchell, S.; Li, J.; Lyu, P.; Wu, X. B.; Pérez-Ramírez, J.; Lu, J. Design of local atomic environments in single-atom electrocatalysts for renewable energy conversions. Adv. Mater. 2021, 33, 2003075.

    CAS  Google Scholar 

  17. Liu, P. X.; Zheng, N. F. Coordination chemistry of atomically dispersed catalysts. Natl. Sci. Rev. 2018, 5, 636–638.

    CAS  Google Scholar 

  18. Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

    CAS  Google Scholar 

  19. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    CAS  Google Scholar 

  20. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    CAS  Google Scholar 

  21. Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

    CAS  Google Scholar 

  22. Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

    CAS  Google Scholar 

  23. Wang, L. L.; Zhu, C. W.; Xu, M. Q.; Zhao, C. L.; Gu, J.; Cao, L. N.; Zhang, X. H.; Sun, Z. H.; Wei, S. Q.; Zhou, W. et al. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 2021, 143, 18854–18858.

    CAS  Google Scholar 

  24. Xu, W. Q.; Song, W. Y.; Kang, Y. K.; Jiao, L.; Wu, Y.; Chen, Y. F.; Cai, X. L.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

    CAS  Google Scholar 

  25. Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

    CAS  Google Scholar 

  26. Zhang, J.; Wang, L.; Shao, Y.; Wang, Y. Q.; Gates, B. C.; Xiao, F. S. A Pd@zeolite catalyst for nitroarene hydrogenation with high product selectivity by sterically controlled adsorption in the zeolite micropores. Angew. Chem. 2017, 129, 9879–9883.

    Google Scholar 

  27. Zhao, X.; Wang, F. L.; Kong, X. P.; Fang, R. Q.; Li, Y. W. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 2021, 143, 16068–16077.

    CAS  Google Scholar 

  28. Zhang, Y. F.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal. 2015, 5, 4503–4513.

    Google Scholar 

  29. Zhou, T. J.; Mo, Y. R.; Liu, A. M.; Zhou, Z. H.; Tsai, K. R. Enzymatic mechanism of Fe-only hydrogenase: Density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers. Inorg. Chem. 2004, 43, 923–930.

    CAS  Google Scholar 

  30. Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 2013, 501, 84–87.

    CAS  Google Scholar 

  31. Seefeldt, L. C.; Yang, Z. Y.; Lukoyanov, D. A.; Harris, D. F.; Dean, D. R.; Raugei, S.; Hoffman, B. M. Reduction of substrates by nitrogenases. Chem. Rev. 2020, 120, 5082–5106.

    CAS  Google Scholar 

  32. Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C. Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem., Int. Ed. 2012, 51, 3822–3825.

    CAS  Google Scholar 

  33. Gao, L. Z.; Gao, X. F.; Yan, X. Y. Kinetics and mechanisms for nanozymes. In Nonozomology: Cnnnenting biolygy and nanotechnology. Yan, X. Y., Ed.; Springer: Singapore, 2020; pp 17–39.

    Google Scholar 

  34. Ma, N. N.; Chen, Z. F.; Chen, J.; Chen, J. F.; Wang, C.; Zhou, H. F.; Yao, L. S.; Shoji, O.; Watanabe, Y.; Cong, Z. Q. Dual-functional small molecules for generating an efficient cytochrome P450BM3 peroxygenase. Angew. Chem., Int. Ed. 2018, 57, 7628–7633.

    CAS  Google Scholar 

  35. Zhang, B.; Xu, P.; Qiu, Y.; Yu, Q.; Ma, J. J.; Wu, H.; Luo, G. Q.; Xu, M. H.; Yao, H. Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem. Eng. J. 2015, 263, 1–8.

    CAS  Google Scholar 

  36. Han, G. F.; Li, F.; Zou, W.; Karamad, M.; Jeon, J. P.; Kim, S. W.; Kim, S. J.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L. et al. Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 2020, 11, 2209.

    CAS  Google Scholar 

  37. Chen, C. M.; Zhang, Q.; Yang, M. G.; Huang, C. H.; Yang, Y. G.; Wang, M. Z. Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 2012, 50, 3572–3584.

    CAS  Google Scholar 

  38. Seoudi, R.; El-Bahy, G. S.; El Sayed, Z. A. FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J. Mol. Struct. 2005, 753, 119–126.

    CAS  Google Scholar 

  39. Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. A multiplet analysis of Fe K-edge 1s→3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314.

    CAS  Google Scholar 

  40. Wu, Z. Y.; Ouvrard, G.; Gressier, P.; Natoli, C. R. Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra. Phys. Rev. B 1997, 55, 10381–10391.

    Google Scholar 

  41. Yamamoto, T. Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: Electric dipole or quadrupole? X-Ray Spectrom. 2008, 37, 572–584.

    CAS  Google Scholar 

  42. Maruyama, J.; Abe, I. Fuel cell cathode catalyst with heme-like structure formed from nitrogen of glycine and iron. J. Electrochem. Soc. 2007, 154, B297–B304.

    CAS  Google Scholar 

  43. Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefèvre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 11673–11688.

    CAS  Google Scholar 

  44. Ren, Y. J.; Wei, H. S.; Yin, G. Z.; Zhang, L. L.; Wang, A. Q.; Zhang, T. Oxygen surface groups of activated carbon steer the chemoselective hydrogenation of substituted nitroarenes over nickel nanoparticles. Chem. Commun. 2017, 53, 1969–1972.

    CAS  Google Scholar 

  45. Chuang, C. H.; Ray, S. C.; Mazumder, D.; Sharma, S.; Ganguly, A.; Papakonstantinou, P; Chiou, J. W.; Tsai, H. M.; Shiu, H. W.; Chen, C. H. et al. Chemical modification of graphene oxide by nitrogenation: An X-ray absorption and emission spectroscopy study. Sci. Rep. 2017, 7, 42235.

    CAS  Google Scholar 

  46. Qi, W.; Liu, W.; Zhang, B. S.; Gu, X. M.; Guo, X. L.; Su, D. S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active sites by chemical titration. Angew. Chem., Int. Ed. 2013, 52, 14224–14228.

    CAS  Google Scholar 

  47. Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

    CAS  Google Scholar 

  48. Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

    Google Scholar 

  49. Yang, S.; Cheng, Q. Q.; Mao, J. N.; Xu, Q.; Zhang, Y. J.; Guo, Y.; Tan, T. Y.; Luo, W.; Yang, H.; Jiang, Z. Rational design of edges of covalent organic networks for catalyzing hydrogen peroxide production. Appl. Catal. B 2021, 298, 120605.

    CAS  Google Scholar 

  50. Jeong, H. K.; Noh, H. J.; Kim, J. Y.; Jin, M. H.; Park, C. Y.; Lee, Y. H. X-ray absorption spectroscopy of graphite oxide. Eur. Lett. 2008, 82, 67004.

    Google Scholar 

  51. Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A singleatom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    CAS  Google Scholar 

  52. Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Performance, Structure, and mechanism of ReOt-Pd/CeO2 catalyst for simultaneous removal of vicinal OH groups with H2. ACS Catal. 2016, 6, 3213–3226.

    CAS  Google Scholar 

  53. Thornton, D. A. Metal complexes of aniline: Infrared and Raman spectra. J. Coord. Chem. 1991, 24, 261–289.

    CAS  Google Scholar 

  54. Tamura, M.; Yuasa, N.; Nakagawa, Y.; Tomishige, K. Selective hydrogenation of nitroarenes to aminoarenes using a MoOx-modified Ru/SiO2 catalyst under mild conditions. Chem. Commun. 2017, 53, 3377–3380.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of National Natural Science Foundation of China (NSFC, Nos. 21802094, 22002118, 22172119, and 22102167), Postdoctoral Research Foundation of China (Nos. 2020TQ0245 and 2021M693060) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2021JM-047). We also thank the BL 14W beamline at the SSRF and MCD-A beamline at NSRL. The calculations were performed on the Supercomputing Center of the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujing Ren, Jinlong Yang or Yong Qin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Zhou, Y., Ren, Y. et al. Insights into the effect of substrate adsorption behavior over heme-like Fe1/AC single-atom catalyst. Nano Res. 15, 5970–5976 (2022). https://doi.org/10.1007/s12274-022-4274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4274-x

Keywords

Navigation