Skip to main content
Log in

High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-supported transition metal single atoms are promising oxygen reduction reaction (ORR) electrocatalyst. Since there are many types of carbon supports and transition metals, the accurate prediction of the components with high activity through theoretical calculations can greatly save experimental time and costs. In this work, the ORR catalytic properties of 180 types single-atom catalysts (SACs) composed of the eight representative carbon-based substrates (graphdiyne, C2N, C3N4, phthalocyanine, C-coordination graphene, N-coordination graphene, covalent organic frameworks and metal-organic frameworks) and 3d, 4d, and 5d transition metal elements are investigated by density functional theory (DFT). The adsorption free energy of OH* is proved a universal descriptor capable of accurately prediction of the ORR catalytic activity. It is found that the oxygen reduction reaction overpotentials of all the researched SACs follow one volcano shape very well with the adsorption free energy of OH*. Phthalocyanine, N-coordination graphene and metal-organic frameworks stand out as the promising supports for single metal atom due to the relatively lower overpotentials. Notably, the Co-doped metal-organic frameworks, Ir-doped phthalocyanine, Co-doped N-coordination graphene, Co-doped graphdiyne and Rh-doped phthalocyanine show extremely low overpotentials comparable to that of Pt (111). The study provides a guideline for design and selection of carbon-supported SACs toward oxygen reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  CAS  Google Scholar 

  2. Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Earth-abundant nanomaterials for oxygen reduction. Angew. Chem., Int. Edit. 2016, 55, 2650–2676.

    Article  CAS  Google Scholar 

  3. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance. J. Am. Chem. Soc. 2014, 136, 4394–4403.

    Article  CAS  Google Scholar 

  4. Yu, D. S.; Nagelli, E.; Du, F.; Dai, L. M. Metal-free carbon nanomaterials become more active than metal catalysts and last longer. J. Phys. Chem. Lett. 2010, 1, 2165–2173.

    Article  CAS  Google Scholar 

  5. Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2d covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Edit. 2014, 53, 2433–2437.

    Article  CAS  Google Scholar 

  6. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  Google Scholar 

  7. Da Silva, G. C.; Fernandes, M. R.; Ticianelli, E. A. Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions. ACS Catal. 2018, 8, 2081–2092.

    Article  CAS  Google Scholar 

  8. Zhang, X. L.; Zhang, Y. Y.; Cheng, C.; Yang, Z. X.; Hermansson, K. Tuning the ORR activity of Pt-based Ti2CO2 MXenes by varying the atomic cluster size and doping with metals. Nanoscale 2020, 12, 12497–12507.

    Article  CAS  Google Scholar 

  9. Lim, B.; Jiang, M. J.; Camargo, P. H.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  CAS  Google Scholar 

  10. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  11. Li, Y. C.; Hu, R. M.; Chen, Z. B.; Wan, X.; Shang, J. X.; Wang, F. H.; Shui, J. L. Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: Theoretical considerations. Nano Res. 2021, 14, 611–619.

    Article  CAS  Google Scholar 

  12. Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

    Article  CAS  Google Scholar 

  13. Zhu, Z. Y.; Liu, Q. T.; Liu, X. F.; Shui, J. L. Temperature impacts on oxygen reduction reaction measured by the rotating disk electrode technique. J. Phys. Chem. C 2020, 124, 3069–3079.

    Article  CAS  Google Scholar 

  14. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  Google Scholar 

  15. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  16. Liu, J. Y.; Kong, X.; Zheng, L. R.; Guo, X.; Liu, X. F.; Shui, J. L. Rare earth single-atom catalysts for nitrogen and carbon dioxide reduction. ACS Nano 2020, 14, 1093–1101.

    Article  CAS  Google Scholar 

  17. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  CAS  Google Scholar 

  18. Ferivoliotis, D. K.; Sato, Y.; Suenaga, K.; Tagmatarchis, N. Covalently functionalized layered MoS2 supported Fd nanoparticles as highly active oxygen reduction electrocatalysts. Nanoscale 2020, 12, 18278–18288.

    Article  Google Scholar 

  19. Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

    Article  CAS  Google Scholar 

  20. Liang, Z.; Luo, M. M.; Chen, M. W.; Qi, X. F.; Liu, J.; Liu, C.; Feera, S. G.; Liang, T. X. Exploring the oxygen electrode bi-functional activity of Ni-N-C-doped graphene systems with N, C co-ordination and OH ligand effects. J. Mater. Chem. A 2020, 8, 20453–20462.

    Article  CAS  Google Scholar 

  21. Mahmood, J.; Li, F.; Kim, C.; Choi, H. J.; Gwon, O.; Jung, S. M.; Seo, J. M.; Cho, S. J.; Ju, Y. W.; Jeong, H. Y. et al. Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy 2018, 44, 304–310.

    Article  CAS  Google Scholar 

  22. Wei, X. Q.; Luo, X.; Wu, N. N.; Gu, W. L.; Lin, Y. H.; Zhu, C. Z. Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. Nano Energy 2021, 84, 105817.

    Article  CAS  Google Scholar 

  23. Mao, X.; Kour, G.; Yan, C.; Zhu, Z. H.; Du, A. J. Single transition metal atom-doped graphene supported on a nickel substrate: Enhanced oxygen reduction reactions modulated by electron coupling. J. Phys. Chem. C 2019, 123, 3703–3710.

    Article  CAS  Google Scholar 

  24. Kan, D. X.; Lian, R. Q.; Wang, D. S.; Zhang, X. L.; Xu, J.; Gao, X. Y.; Yu, Y.; Chen, G.; Wei, Y. J. Screening effective single-atom ORR and OER electrocatalysts from Ft decorated MXenes by first-principles calculations. J. Mater. Chem. A 2020, 8, 17065–17077.

    Article  CAS  Google Scholar 

  25. He, B. L.; Shen, J. S.; Ma, D. W.; Lu, Z. S.; Yang, Z. X. Boron-doped C3N monolayer as a promising metal-free oxygen reduction reaction catalyst: A theoretical insight. J. Phys. Chem. C 2018, 122, 20312–20322.

    Article  CAS  Google Scholar 

  26. He, B. L.; Shen, J. S.; Lu, Z. S.; Ma, D. W. First-principles study of the oxygen reduction reaction on the boron-doped C9N4 metal-free catalyst. Appl. Surf. Sci. 2020, 527, 146828.

    Article  CAS  Google Scholar 

  27. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, F.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Edit. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  28. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  29. Yu, X. M.; Han, F.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Feng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  30. Xue, Z.; Zhang, X. Y.; Qin, J. Q.; Liu, R. F. High-throughput identification of high activity and selectivity transition metal single-atom catalysts for nitrogen reduction. Nano Energy 2021, 80, 105527.

    Article  CAS  Google Scholar 

  31. Li, X. Y.; Rong, H. F.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  32. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struc. 2021, 2, 2000051.

    Article  Google Scholar 

  33. Iwase, K.; Nakanishi, S.; Miyayama, M.; Kamiya, K. Rational molecular design of electrocatalysts based on single-atom modified covalent organic frameworks for efficient oxygen reduction reaction. ACS Appl. Energ. Mater. 2020, 3, 1644–1652.

    Article  CAS  Google Scholar 

  34. Gao, Y.; Cai, Z. W.; Wu, X. C.; Lv, Z. L.; Wu, F.; Cai, C. X. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS Catal. 2018, 8, 10364–10374.

    Article  CAS  Google Scholar 

  35. He, T. W.; Matta, S. K.; Will, G.; Du, A. J. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019, 3, 1800419.

    Article  Google Scholar 

  36. Nerskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  37. Calle-Vallejo, F.; Martinez, J. I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygenreduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.

    Article  CAS  Google Scholar 

  38. Liu, J.; Ma, R. F.; Chu, Y. Y.; Gao, N. X.; Jin, Z.; Ge, J. J.; Liu, C. F.; Xing, W. Construction and regulation of a surface protophilic environment to enhance oxygen reduction reaction electrocatalytic activity. ACS Appl. Mater. Inter. 2020, 12, 41269–41276.

    Article  CAS  Google Scholar 

  39. Xue, Z.; Zhang, X. Y.; Qin, J. Q.; Liu, R. F. TmN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. J. Energy Chem. 2021, 55, 437–443.

    Article  Google Scholar 

  40. Li, M. T.; Zhang, L. F.; Xu, Q.; Niu, J. B.; Xia, Z. H. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 2014, 314, 66–72.

    Article  CAS  Google Scholar 

  41. Wang, H. X.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J. C.; Jiang, J. X.; Jia, F. Q. et al. Understanding the roles of nitrogen configurations in hydrogen evolution: Trace atomic cobalt boosts the activity of planar nitrogen-doped graphene. ACS Energy Lett. 2018, 3, 1345–1352.

    Article  CAS  Google Scholar 

  42. Xu, H. X.; Cheng, D. J.; Cao, D. F.; Zeng, X. C. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 2018, 1, 339–348.

    Article  CAS  Google Scholar 

  43. Li, L.; Huang, R.; Cao, X. R.; Wen, Y. H. Computational screening of efficient graphene-supported transition metal single atom catalysts toward the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 19319–19327.

    Article  CAS  Google Scholar 

  44. Chen, X.; Hu, R. DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts. Int. J. Hydrog. Energ. 2019, 44, 15409–15416.

    Article  CAS  Google Scholar 

  45. Han, Z. K.; Sarker, D.; Ouyang, R. H.; Mazheika, A.; Gao, Y.; Levchenko, S. V. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 2021, 12, 1833.

    Article  CAS  Google Scholar 

  46. Fischer, J. M.; Hunter, M.; Hankel, M.; Searles, D. J.; Farker, A. J.; Barnard, A. S. Accurate prediction of binding energies for two-dimensional catalytic materials using machine learning. ChemCatChem 2020, 12, 5109–5120.

    Article  Google Scholar 

  47. Xiao, Y.; Tang, L. High-throughput approach exploitation: Two-dimensional double-metal sulfide (M2S2) of efficient electrocatalysts for oxygen reduction reaction in fuel cells. Energ. Fuel. 2020, 34, 5006–5015.

    Article  CAS  Google Scholar 

  48. Sarwar, M.; Gavartin, J. L.; Bonastre, A. M.; Lopez, S. G.; Thompsett, D.; Ball, S. C.; Krzystala, A.; Goldbeck, G.; French, S. A. Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Ft alloy catalysts. Phys. Chem. Chem. Phys. 2020, 22, 5902–5914.

    Article  CAS  Google Scholar 

  49. Zhang, X. L.; Yang, Z. X.; Lu, Z. S.; Wang, W. C. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon 2018, 130, 112–119.

    Article  CAS  Google Scholar 

  50. Wang, J.; Xu, R.; Sun, Y. L.; Liu, Q.; Xia, M. R.; Li, Y.; Gao, F. M.; Zhao, Y. F.; Tse, J. S. Identifying the Zn-Co binary as a robust bifunctional electrocatalyst in oxygen reduction and evolution reactions via shifting the apexes of the volcano plot. J. Energy Chem. 2021, 55, 162–168.

    Article  Google Scholar 

  51. Hu, R. M.; Li, Y. C.; Zeng, Q. W.; Shang, J. X. Role of active sites in N-coordinated Fe-Co dual-metal doped graphene for oxygen reduction and evolution reactions: A theoretical insight. Appl. Surf. Sci. 2020, 525, 146588.

    Article  CAS  Google Scholar 

  52. Waller, F. J.; Gandara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

    Article  CAS  Google Scholar 

  53. Ji, Y. J.; Dong, H. L.; Liu, C.; Li, Y. Y. Two-dimensional pi-conjugated metal-organic nanosheets as single-atom catalysts for the hydrogen evolution reaction. Nanoscale 2019, 11, 454–458.

    Article  CAS  Google Scholar 

  54. Shah, S. S. A.; Najam, T.; Aslam, M. K.; Ashfaq, M.; Rahman, M. M.; Wang, K.; Tsiakaras, P.; Song, S. Q.; Wang, Y. Recent advances on oxygen reduction electrocatalysis: Correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B-Environ. 2020, 268, 118570.

    Article  CAS  Google Scholar 

  55. Li, X. Y.; Zhong, W. H.; Cui, P.; Li, J.; Jiang, J. Design of efficient catalysts with double transition metal atoms on C2N layer. J. Phys. Chem. Lett. 2016, 7, 1750–1755.

    Article  CAS  Google Scholar 

  56. Xu, J. Y; Liu, B. Intrinsic properties of nitrogen-rich carbon nitride for oxygen reduction reaction. Appl. Surf. Sci. 2020, 500, 144020.

    Article  CAS  Google Scholar 

  57. Yoshioka, T.; Iwase, K.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Electrocatalytic reduction of nitrate to nitrous oxide by a copper-modified covalent triazine framework. J. Phys. Chem. C 2016, 120, 15729–15734.

    Article  CAS  Google Scholar 

  58. Wang, Y.; Yuan, H.; Li, Y. F; Chen, Z. F. Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: A computational study. Nanoscale 2015, 7, 11633–11641.

    Article  CAS  Google Scholar 

  59. Niu, H.; Wang, X. T.; Shao, C.; Liu, Y. S.; Zhang, Z. F.; Guo, Y. Z. Revealing the oxygen reduction reaction activity origin of single atoms supported on g-C3N4 monolayers: A first-principles study. J. Mater. Chem. A 2020, 8, 6555–6563.

    Article  CAS  Google Scholar 

  60. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  61. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  62. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  63. Ernzerhof, M.; Scuseria, G. E. Assessment of the perdew-burke-ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

    Article  CAS  Google Scholar 

  64. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  65. Liu, J. H.; Yang, L. M.; Ganz, E. Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustain. Chem. Eng. 2018, 6, 15494–15502.

    Article  CAS  Google Scholar 

  66. Ji, S.; Wang, Z. X.; Zhao, J. X. A boron-interstitial doped C2N layer as a metal-free electrocatalyst for N2 fixation: A computational study. J. Mater. Chem. A 2019, 7, 2392–2399.

    Article  CAS  Google Scholar 

  67. Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

    Article  CAS  Google Scholar 

  68. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  69. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  70. Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  71. Rothenberg, G Catalysis: Concepts and green applications. Focus on Catal. 2008, 2008, 8.

    Google Scholar 

  72. Mortazavi, B.; Shahrokhi, M.; Hussain, T.; Zhuang, X. Y.; Rabczuk, T. Theoretical realization of two-dimensional M3(C6X6)2 (M = Co, Cr, Cu, Fe, Mn, Ni, Pd, Rh and X = O, S, Se) metal-organic frameworks. Appl. Mater. Today 2019, 15, 405–415.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51371017). This research was supported by the high-performance computing (HPC) resources at Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxiang Shang or Jianglan Shui.

Additional information

Conflicts of interest

There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hu, R., Li, Y. et al. High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Res. 15, 1054–1060 (2022). https://doi.org/10.1007/s12274-021-3598-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3598-2

Keywords

Navigation