Skip to main content
Log in

Partially charged single-atom Ru supported on ZrO2 nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling, undesired disproportionation reactions, and energy-intensive purification of products. Herein, we report a heterogeneous 0.5Ruδ+/ZrO2 catalyst with partially charged single-atom Ru (0.5 wt.% Ru) supported on commercial ZrO2 nanocrystals synthesized by the simple impregnation method followed by H2 reduction. When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane, 0.5Ruδ+/ZrO2 showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability, even superior to homogeneous catalyst (RuCl3·H2O). Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst. The reaction route over this catalyst is supposed to follow the typical Chalk—Harrod mechanism. This highly efficient and supported single-atom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marciniec, B. Catalysis by transition metal complexes of alkene silylation-recent progress and mechanistic implications. Coord. Chem. Rev. 2005, 249, 2374–2390.

    Article  CAS  Google Scholar 

  2. Liu, L.; Li, X. N.; Dong, H.; Wu, C. Hydrosilylation reaction of ethylene with triethoxysilane catalyzed by ruthenium halides and promoted by cuprous halides. J. Organomet. Chem. 2013, 745–746, 454–459.

    Article  Google Scholar 

  3. Nakajima, Y.; Shimada, S. Hydrosilylation reaction of olefins: Recent advances and perspectives. RSC Adv. 2015, 5, 20603–20616.

    Article  CAS  Google Scholar 

  4. Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc. 1957, 79, 974–979.

    Article  CAS  Google Scholar 

  5. Karstedt, B. Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes. U. S. Patent 3, 775, 452, November 27, 1973.

  6. Hilal, H. S.; Khalaf, S.; Jondi, W. Cluster versus non-cluster catalysis in olefin thermal isomerization and hydrosilylation in the presence of Ru3(CO)12. J. Organomet. Chem. 1993, 452, 167–173.

    Article  CAS  Google Scholar 

  7. Tanaka, M.; Hayashi, T.; Mi, Z. Y. Ruthenium complex-catalyzed hydrosilylation of allyl chloride with trimethoxysilane. J. Mol. Catal. 1993, 81, 207–214.

    Article  CAS  Google Scholar 

  8. Chalk, A. J. The hydrosilation of olefins catalzed by some rhodium and cobalt complexes. J. Organomet. Chem. 1970, 21, 207–213.

    Article  CAS  Google Scholar 

  9. Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 2012, 335, 567–570.

    Article  CAS  Google Scholar 

  10. Markó, I. E.; Stérin, S.; Buisine, O.; Mignani, G.; Branlard, P.; Tinant, B.; Declercq, J. P. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 2002, 298, 204–206.

    Article  Google Scholar 

  11. Ciriminna, R.; Pandarus, V.; Gingras, G.; Béland, F.; Pagliaro, M. Closing the organosilicon synthetic cycle: Efficient heterogeneous hydrosilylation of alkenes over SiliaCat P((0). ACS Sustainable Chem. Eng. 2013, 1, 249–253.

    Article  CAS  Google Scholar 

  12. Jawale, D. V.; Geertsen, V.; Miserque, F.; Berthault, P.; Gravel, E.; Doris, E. Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes. Green Chem. 2021, 23, 815–820.

    Article  CAS  Google Scholar 

  13. Bandari, R.; Buchmeiser, M. R. Polymeric monolith supported Pt-nanoparticles as ligand-free catalysts for olefinhydrosilylation under batch and continuous conditions. Catal. Sci. Technol. 2022, 2, 220–226.

    Article  Google Scholar 

  14. Polizzi, C.; Caporusso, A. M.; Vitulli, G.; Salvadori, P.; Pasero, M. Supported platinum atoms derived catalysts in the hydrosilylation of unsaturated substrates. J. Mol. Catal. 1994, 91, 83–90.

    Article  CAS  Google Scholar 

  15. Marciniec, B.; Maciejewski, H.; Duczmal, W.; Fiedorow, R.; Kityński, D. Kinetics and mechanism of the reaction of allyl chloride with trichlorosilane catalyzed by carbon-supported platinum. Appl. Organomet. Chem. 2003, 17, 127–134.

    Article  CAS  Google Scholar 

  16. Jiang, Y. N.; Zeng, J. H.; Yang, Y.; Liu, Z. K.; Chen, J. J.; Li, D. C.; Chen, L.; Zhan, Z. P. A conjugated microporous polymer as a recyclable heterogeneous ligand for highly efficient regioselective hydrosilylation of allenes. Chem. Commun. 2020, 56, 1597–1600.

    Article  CAS  Google Scholar 

  17. Chauhan, M.; Hauck, B. J.; Keller, L. P.; Boudjouk, P. Hydrosilylation of alkynes catalyzed by platinum on carbon. J. Organomet. Chem. 2002, 645, 1–3.

    Article  CAS  Google Scholar 

  18. Jiménez, R.; López, J. M.; Cervantes, J. Metal supported catalysts obtained by sol-gel in the hydrosilylation of phenylacetylene with R3SiH organosilanes (R3 = Ph3, Ph2Me, and PhMe2). Can. J. Chem. 2000, 78, 1491–1495.

    Article  Google Scholar 

  19. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  20. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  21. Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

    Article  Google Scholar 

  22. Gao, P.; Liang, G. F.; Ru, T.; Liu, X. Y.; Qi, H. F.; Wang, A. Q.; Chen, F. E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.

    Article  CAS  Google Scholar 

  23. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  24. Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

    Article  CAS  Google Scholar 

  25. Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017, 7, 3147–3151.

    Article  CAS  Google Scholar 

  26. Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544–2552.

    Article  CAS  Google Scholar 

  27. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

    Article  CAS  Google Scholar 

  28. Cui, X. J.; Junge, K.; Dai, X. C.; Kreyenschulte, C.; Pohl, M. M.; Wohlrab, S.; Shi, F.; Brückner, A.; Beller, M. Synthesis of single atom based heterogeneous platinum catalysts: High selectivity and activity for hydrosilylation reactions. ACS Cent. Sci. 2017, 3, 580–585.

    Article  CAS  Google Scholar 

  29. Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

    Article  CAS  Google Scholar 

  30. Wang, J.; Fang, W. H.; Hu, Y.; Zhang, Y. H.; Dang, J. Q.; Wu, Y.; Chen, B. Z.; Zhao, H.; Li, Z. X. Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B 2021, 298, 120490.

    Article  CAS  Google Scholar 

  31. Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504–9514.

    Article  CAS  Google Scholar 

  32. Li, X. Y.; Han, Y. J.; Huang, Y. K.; Lin, J.; Pan, X. L.; Zhao, Z.; Zhou, Y. L.; Wang, H.; Yang, X. F.; Wang, A. Q. et al. Hydrogenated TiO2 supported Ru for selective methanation of CO in practical conditions. Appl. Catal. B 2021, 298, 120597.

    Article  CAS  Google Scholar 

  33. Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

    Article  CAS  Google Scholar 

  34. Jing, Y. X.; Wang, Y. Q.; Furukawa, S.; Xia, J.; Sun, C. Y.; Hülsey, M. J.; Wang, H. F.; Guo, Y.; Liu, X. H.; Yan, N. Towards the circular economy: Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew. Chem., Int. Ed. 2021, 60, 5527–5535.

    Article  CAS  Google Scholar 

  35. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.

    Article  CAS  Google Scholar 

  36. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

    Article  CAS  Google Scholar 

  37. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  39. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  40. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  41. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

    Article  CAS  Google Scholar 

  42. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys.: Condens. Matter 1997, 9, 767–808.

    CAS  Google Scholar 

  43. Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514–17526.

    Article  CAS  Google Scholar 

  44. Jónsson, H.; Mills, G.; Jacobsen, K. W. Nudged elastic band method for finding minimum energy paths of transitions. In Classical and Quantum Dynamics in Condensed Phase Simulations. Berne, B. J., Ed.; Sinqapore: World Scientific, 1998; pp 385–404.

    Chapter  Google Scholar 

  45. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  46. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    Article  CAS  Google Scholar 

  47. Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    Article  CAS  Google Scholar 

  48. Ftouni, J.; Muñoz-Murillo, A.; Goryachev, A.; Hofmann, J. P.; Hensen, E. J. M.; Lu, L.; Kiely, C. J.; Bruijnincx, P. C. A.; Weckhuysen, B. M. ZrO2 Is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone. ACS Catal. 2016, 6, 5462–5472.

    Article  CAS  Google Scholar 

  49. Hernández, W. Y.; Centeno, M. A.; Ivanova, S.; Eloy, P.; Gaigneaux, E. M.; Odriozola, J. A. Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Appl. Catal. B 2012, 123–124, 27–35.

    Article  Google Scholar 

  50. Mo, S. P.; Li, S. D.; Li, W. H.; Li, J. Q.; Chen, J. Y.; Chen, Y. F. Excellent low temperature performance for total benzene oxidation over mesoporous CoMnAl composited oxides from hydrotalcites. J. Mater. Chem. A 2016, 4, 8113–8122.

    Article  CAS  Google Scholar 

  51. Bian, Z. F.; Chan, Y. M.; Yu, Y.; Kawi, S. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catal. Today 2020, 347, 31–38.

    Article  CAS  Google Scholar 

  52. Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

    Article  CAS  Google Scholar 

  53. Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended x-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.

    Article  Google Scholar 

  54. Wang, S. Z.; Zhang, K. L.; Li, H. L.; Xiao, L. P.; Song, G. Y. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat. Commun. 2021, 12, 416.

    Article  CAS  Google Scholar 

  55. Liu, L.; Li, X.; Ma, Y.; Wu, C.; Han, G. Selective catalytic hydrosilylation of ethylene. Preparation of ethyltrimethoxysilane by H2O promoted RuCl3·3H2O catalyst. Kinet. Catal. 2020, 61, 414–420.

    Article  CAS  Google Scholar 

  56. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  57. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    Article  CAS  Google Scholar 

  58. Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.

    Article  CAS  Google Scholar 

  59. Liu, X. Y.; Ye, S.; Lan, G. J.; Su, P. P.; Zhang, X. L.; Price, C. A. H.; Li, Y.; Liu, J. Atomic pyridinic nitrogen sites promoting levulinic acid hydrogenations over double-shelled hollow Ru/C nanoreactors. Small 2021, 17, 2101271.

    Article  CAS  Google Scholar 

  60. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, DOI: https://doi.org/10.1016/j.apmate.2021.10.004.

  61. Osseo-Asare, K.; Arriagada, F. J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf. 1990, 50, 321–339.

    Article  CAS  Google Scholar 

  62. Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  63. Chalk, A. J.; Harrod, J. F. Reactions between dicobalt octacarbonyl and silicon hydrides. J. Am. Chem. Soc. 1965, 87, 1133–1135.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22002004). Y. J. thanks the financial supports from the Outstanding Youth Cultivation Program of Beijing Technology and Business University (No. 19008021144), and Research Foundation for Advanced Talents of Beijing Technology and Business University (No. 19008020159). Z. Z. thanks the financial support of Guangdong Key discipline fund for this collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjun Ji, Guangwen Xu or Fabing Su.

Electronic Supplementary Material

12274_2022_4227_MOESM1_ESM.pdf

Partially charged single-atom Ru supported on ZrO2 nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, S., Li, J. et al. Partially charged single-atom Ru supported on ZrO2 nanocrystals for highly efficient ethylene hydrosilylation with triethoxysilane. Nano Res. 15, 5857–5864 (2022). https://doi.org/10.1007/s12274-022-4227-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4227-4

Keywords

Navigation