Skip to main content
Log in

Organic photocatalysts: From molecular to aggregate level

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Organic semiconductors (OSCs) have the advantages of tunable molecular structures, suitable band gaps, and exceptional optoelectronic properties. The π-π stacking ability of OSCs also leads to appealing molecular stacking structure, function, and stability. So far, organic photocatalysts have engaged in homogeneous or heterogeneous photocatalysis in the form of free molecules, supported molecules, or nanostructures. Meanwhile, researches on organic photocatalysts have expanded from small organic molecules to the organic macromolecules, as well as their various nanostructures and nanocomposites including isolated zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) nanostructures, and their combinations. Therefore, many versatile strategies have been explored to improve photocatalytic ability and practicality either from molecular synthetic modification, crystal, or interface engineering. In this review, we first discuss the photophysical and photochemical processes of organic photocatalysts that govern the ultimate photocatalytic efficiency; we then summarize different forms of organic photocatalysts, their rational design strategies, and mechanistic pathways, as well as their applications in H2 evolution, CO2 reduction, and environmental purification, aiming to highlight the structure/property relationships; we lastly propose ongoing directions and challenges for future development of organic photocatalysts in real use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Q. Q.; Zhao, W. L.; Zhai, Z. C.; Ren, K. X.; Wang, T. Y.; Guan, H.; Shi, H. F. 2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. J. Mater. Sci. Technol. 2020, 56, 216–226.

    Article  CAS  Google Scholar 

  2. Chen, Y. Z.; Jiang, D. J.; Gong, Z. Q.; Li, Q. L.; Shi, R. R.; Yang, Z. X.; Lei, Z. Y.; Li, J. Y.; Wang, L. N. Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation. J. Mater. Sci. Technol. 2020, 38, 93–106.

    Article  CAS  Google Scholar 

  3. Zhu, D. D.; Zhou, Q. X. Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environ. Nanotechnol., Monit. Manag. 2019, 12, 100255.

    Google Scholar 

  4. Singh, P.; Shandilya, P.; Raizada, P.; Sudhaik, A.; Rahmani-Sani, A. Hosseini-Bandegharaei, A. Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab. J. Chem. 2020, 13, 3498–3520.

    Article  CAS  Google Scholar 

  5. Rueda-Marquez, J. J.; Levchuk, I.; Ibañez, P. F. Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean Prod. 2020, 258, 120694.

    Article  CAS  Google Scholar 

  6. Kim, M. G.; Jo, W. K. Visible-light-activated N-doped CQDs/g-C3N4/Bi2WO6 nanocomposites with different component arrangements for the promoted degradation of hazardous vapors. J. Mater. Sci. Technol. 2020, 40, 168–175.

    Article  CAS  Google Scholar 

  7. Pirhashemi, M.; Habibi-Yangjeh, A. Fabrication of novel ZnO/MnWO4 nanocomposites with p-n heterojunction: Visible-light-induced photocatalysts with substantially improved activity and durability. J. Mater. Sci. Technol. 2018, 34, 1891–1901.

    Article  CAS  Google Scholar 

  8. Wei, K. X.; Faraj, Y.; Yao, G.; Xie, R. Z.; Lai, B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chem. Eng. J. 2021, 414, 128783.

    Article  CAS  Google Scholar 

  9. Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 22, 2294–2320.

    Article  Google Scholar 

  10. Cao, M. T.; Yang, F. L.; Zhang, Q.; Zhang, J. H.; Zhang, L.; Li, L. F.; Wang, X. H.; Dai, W. L. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production. J. Mater. Sci. Technol. 2021, 76, 189–199.

    Article  CAS  Google Scholar 

  11. Chen, Y. Z.; Li, W. H.; Li, L.; Wang, L. N. Progress in organic photocatalysts. Rare Met. 2018, 37, 1–12.

    Article  CAS  Google Scholar 

  12. Kirner, J. T.; Finke, R. G. Water-oxidation photoanodes using organic light-harvesting materials: A review. J. Mater. Chem. A 2017, 5, 19560–19592.

    Article  CAS  Google Scholar 

  13. Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 2014, 43, 5982–5993.

    Article  CAS  Google Scholar 

  14. Liu, Z. Z.; Zhao, T. M.; Guan, H. Y.; Zhong, T. Y; He, H. X.; Xing, L. L.; Xue, X. Y. A self-powered temperature-sensitive electronic-skin based on tribotronic effect of PDMS/PANI nanostructures. J. Mater. Sci. Technol. 2019, 35, 2187–2193.

    Article  CAS  Google Scholar 

  15. Wang, W.; Lu, B.; Deng, W.; Zhang, X. J.; Lu, Z. J.; Wu, D.; Jie, J. S.; Zhang, X. H. Controlled 2D growth of organic semiconductor crystals by suppressing “coffee-ring” effect. Nano Res. 2020, 13, 2478–2484.

    Article  CAS  Google Scholar 

  16. Xiao, Z. Y.; Zhou, Y.; Xin, X. L.; Zhang, Q. H.; Zhang, L. L.; Wang R. M.; Sun D. F. Iron(III) porphyrin-based porous material as photocatalyst for highly efficient and selective degradation of congo red. Macromol. Chem. Phys. 2016, 217, 599–604.

    Article  CAS  Google Scholar 

  17. Andreeva, N. A.; Chaban, V. V. Electronic and thermodynamic properties of the amino- and carboxamido-functionalized C-60-based fullerenes: Towards non-volatile carbon dioxide scavengers. J. Chem. Thermodyn. 2018, 116, 1–6.

    Article  CAS  Google Scholar 

  18. Han, Y. Y.; Ning, W.; Cao, L.; Xu, X. T.; Li, T.; Zhang, F. P.; Pi, L.; Xu, F. Q.; Tian, M. L. Photophysical and electrical properties of organic waveguide nanorods of perylene-3, 4, 9, 10-tetracarboxylic dianhydride. Nano Res. 2016, 9, 1948–1955.

    Article  CAS  Google Scholar 

  19. Chen, S.; Jacobs, D. L.; Xu, J. K.; Li, Y. X.; Wang, C. Y.; Zang, L. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv. 2011, 4, 48486–48491.

    Article  Google Scholar 

  20. Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A. Z.; Ramakrishna, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A 2017, 5, 23406–23433.

    Article  CAS  Google Scholar 

  21. Zhao, C.; Pan, X.; Wang, Z. H.; Wang, C. C. 1 + 1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chem. Eng. J. 2021, 417, 128022.

    Article  CAS  Google Scholar 

  22. Zhao, C.; Zhou, A. W.; Dou, Y. B.; Zhou, J.; Bai, J. Q.; Li, J. R. Dual MOFs template-directed fabrication of hollow-structured heterojunction photocatalysts for efficient CO2 reduction. Chem. Eng. J. 2021, 416, 129155.

    Article  CAS  Google Scholar 

  23. Luo, H. Z.; Zeng, Z. T.; Zeng, G. M.; Zhang, C.; Xiao, R.; Huang, D. L.; Lai, C.; Cheng, M.; Wang, W. J.; Xiong, W. P. et al. Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chem. Eng. J. 2020, 383, 123196.

    Article  CAS  Google Scholar 

  24. Ma, D. L.; Qian, C.; Qi, Q. Y.; Zhong, Z. R.; Jiang, G. F.; Zhao, X. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Res. 2021, 14, 381–386.

    Article  Google Scholar 

  25. Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal-organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

    Article  CAS  Google Scholar 

  26. Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

    Article  CAS  Google Scholar 

  27. Xiong, Z. G.; Xu, Y. M. Immobilization of palladium phthalocyaninesulfonate onto anionic clay for sorption and oxidation of 2, 4, 6-trichlorophenol under visible light irradiation. Chem. Mater. 2007, 19, 1452–1458.

    Article  CAS  Google Scholar 

  28. Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. Recent advances in g-C3N4-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17.

    Article  Google Scholar 

  29. Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

    Article  CAS  Google Scholar 

  30. Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

    Article  CAS  Google Scholar 

  31. Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal-organic framework coated titanium dioxide nanorod array p-n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.

    Article  CAS  Google Scholar 

  32. Liang, Q.; Zhang, C. J.; Xu, S.; Zhou, M.; Zhou, Y. T.; Li, Z. Y. In situ growth of CdS quantum dots on phosphorus-doped carbon nitride hollow tubes as active 0D/1D heterostructures for photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2020, 577, 1–11.

    Article  CAS  Google Scholar 

  33. Liu, B. T.; Vellingiri, K.; Jo, S. H.; Kumar, P.; Ok, Y. S.; Kim, K. H. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res. 2018, 11, 4441–4467.

    Article  CAS  Google Scholar 

  34. Li, X.; Lu, Z. L.; Wang, T. Self-assembly of semiconductor nanoparticles toward emergent behaviors on fluorescence. Nano Res. 2021, 14, 1233–1243.

    Article  CAS  Google Scholar 

  35. Zhao, C. X.; Chen, Z. P.; Shi, R.; Yang, X. F.; Zhang, T. R. Recent advances in conjugated polymers for visible-light-driven water splitting. Adv. Mater. 2020, 32, 1907296.

    Article  CAS  Google Scholar 

  36. Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–166.

    Article  CAS  Google Scholar 

  37. Marin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.; Miranda, M. A. Organic photocatalysts for the oxidation of pollutants and model compounds. Chem. Rev. 2012, 112, 1710–1750.

    Article  CAS  Google Scholar 

  38. Arias-Rotondo, D. M.; McCusker, J. K. The photophysics of photoredox catalysis: A roadmap for catalyst design. Chem. Soc. Rev. 2016, 45, 5803–5820.

    Article  CAS  Google Scholar 

  39. Mital, M.; Ziora, Z. Biological applications of Ru(II) polypyridyl complexes. Coord. Chem. Rev. 2018, 375, 434–458.

    Article  CAS  Google Scholar 

  40. Zhao, J. Z.; Wu, W. H.; Sun, J. F.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351.

    Article  CAS  Google Scholar 

  41. Ghosh, I.; Shaikh, R. S.; König, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem., Int. Ed. 2017, 56, 8544–8549.

    Article  CAS  Google Scholar 

  42. Liu, Q.; Wu, L. Z. Recent advances in visible-light-driven organic reactions. Natl. Sci. Rev. 2017, 4, 359–380.

    Article  CAS  Google Scholar 

  43. Guo, S.; Chen, K. K.; Dong, R.; Zhang, Z. M.; Zhao, J. Z.; Lu, T. B. Robust and long-lived excited state Ru(II) polyimine photosensitizers boost hydrogen production. ACS Catal. 2018, 3, 8659–8670.

    Article  Google Scholar 

  44. Nakada, A.; Koike, K.; Nakashima, T.; Morimoto, T.; Ishitani, O. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution. Inorg. Chem. 2015, 54, 1800–1807.

    Article  CAS  Google Scholar 

  45. Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic reduction of low concentration of CO2. J. Am. Chem. Soc. 2016, 138, 13818–13821.

    Article  CAS  Google Scholar 

  46. Fabry, D. C.; Koizumi, H.; Ghosh, D.; Yamazaki, Y.; Takeda, H.; Tamaki, Y.; Ishitani, O. A Ru(II)-Mn(I) supramolecular photocatalyst for CO2 reduction. Organometallics 2020, 39, 1511–1518.

    Article  CAS  Google Scholar 

  47. Kitamoto, K.; Sakai, K. Tris(2, 2′-bipyridine)ruthenium derivatives with multiple viologen acceptors: Quadratic dependence of photocatalytic H2 evolution rate on the local concentration of the acceptor site. Chem. -Eur. J. 2016, 22, 12381–12390.

    Article  CAS  Google Scholar 

  48. Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions. Nat. Chem. 2012, 4, 854–859.

    Article  CAS  Google Scholar 

  49. Shon, J. H.; Sittel, S.; Teets, T. S. Synthesis and characterization of strong cyclometalated iridium photoreductants for application in photocatalytic aryl bromide hydrodebromination. ACS Catal. 2019, 3, 8646–8658.

    Article  Google Scholar 

  50. Bodedla, G. B.; Tritton, D. N.; Chen, X.; Zhao, J. Z.; Guo, Z. L.; Leung, K. C. F.; Wong, W. Y.; Zhu, X. J. Cocatalyst-free photocatalytic hydrogen evolution with simple heteroleptic iridium(III) complexes. ACS Appl. Energy Mater. 2021, 4, 3945–3951.

    Article  CAS  Google Scholar 

  51. Mills, I. N.; Porras, J. A.; Bernhard, S. Judicious design of cationic, cyclometalated Ir(III) complexes for photochemical energy conversion and optoelectronics. Acc. Chem. Res. 2018, 51, 352–364.

    Article  CAS  Google Scholar 

  52. Cheng, H. C.; Lam, T. L.; Liu, Y. G.; Tang, Z.; Che, C. M. Photoinduced hydroarylation and cyclization of alkenes with luminescent platinum(II) complexes. Angew. Chem., Int. Ed. 2021, 60, 1383–1389.

    Article  CAS  Google Scholar 

  53. Kuramochi, Y.; Satake, A. Photocatalytic CO2 reductions catalyzed by meso-(1, 10-phenanthrolin-2-yl)-porphyrins having a rhenium(I) tricarbonyl complex. Chem. -Eur. J. 2020, 26, 16365–16373.

    Article  CAS  Google Scholar 

  54. Cortés, P. A. F.; Marx, M.; Trose, M.; Beller, M. Heteroleptic copper complexes with nitrogen and phosphorus ligands in photocatalysis: Overview and perspectives. Chem Catal. 2021, 1, 298–338.

    Article  Google Scholar 

  55. Yi, B.; Wen, X. Y.; Yi, Z. Q.; Xie, Y. J.; Wang, Q.; Tan, J. P. Visible-light-enabled regioselective aerobic oxidative C(sp2)-H thiocyanation of aromatic compounds by Eosin-Y photocatalyst. Tetrahedron Lett. 2020, 61, 152628.

    Article  CAS  Google Scholar 

  56. Yang, D. T.; Meng, Q. Y.; Zhong, J. J.; Xiang, M.; Liu, Q.; Wu, L. Z. Metal-free desulfonylation reaction through visible-light photoredox catalysis. Eur. J. Org. Chem. 2013, 2013, 7528–7532.

    Article  CAS  Google Scholar 

  57. Huang, L.; Zhao, J. Z. Iodo-Bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of C-C bonds via reductive and oxidative quenching catalytic mechanisms. Rsc Adv. 2013, 3, 23377–23388.

    Article  CAS  Google Scholar 

  58. Huang, L.; Zhao, J. Z.; Guo, S.; Zhang, C. S.; Ma, J. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes. J. Org. Chem. 2013, 78, 5627–5637.

    Article  CAS  Google Scholar 

  59. Murtinho, D.; Pineiro, M.; Pereira, M. M.; d’A. Rocha Gonsalves, A. M.; Arnaut, L. G.; da Graça Miguel, M.; Burrows, H. D. Novel porphyrins and a chlorin as efficient singlet oxygen photosensitizers for photooxidation of naphthols or phenols to quinones. J. Chem. Soc., Perkin Trans. 2000, 2, 2441–2447.

    Article  Google Scholar 

  60. Ribeiro, S. M.; Serra, A. C.; d’ A. Rocha Gonsalves, A. M. Covalently immobilized porphyrins on silica modified structures as photooxidation catalysts. J. Mol. Catal. A:Chem. 2010, 326, 121–127.

    Article  CAS  Google Scholar 

  61. Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771.

    Article  CAS  Google Scholar 

  62. Tasso, T. T.; Schlothauer, J. C.; Junqueira, H. C.; Matias, T. A.; Araki, K.; Liandra-Salvador, É.; Antonio, F. C. T.; Homem-de-Mello, P.; Baptista, M. S. Photobleaching efficiency parallels the enhancement of membrane damage for porphyrazine photosensitizers. J. Am. Chem. Soc. 2019, 141, 15547–15556.

    Article  CAS  Google Scholar 

  63. Carrillo, A. I.; Elhage, A.; Marin, M. L.; Lanterna, A. E. Perylene-grafted silicas: Mechanistic study and applications in heterogeneous photoredox catalysis. Chem. -Eur. J. 2019, 25, 14928–14934.

    Article  CAS  Google Scholar 

  64. Cai, J. H.; Huang, J. W.; Zhao, P.; Ye, Y. J.; Yu, H. C.; Ji, L. N. Silica microspheres functionalized with porphyrin as a reusable and efficient catalyst for the photooxidation of 1, 5-dihydroxynaphthalene in aerated aqueous solution. J. Photochem. Photobiol. A:Chem. 2009, 207, 236–243.

    Article  CAS  Google Scholar 

  65. Takeda, H.; Ohashi, M.; Tani, T.; Ishitani, O.; Inagaki, S. Enhanced photocatalysis of rhenium(I) complex by light-harvesting periodic mesoporous organosilica. Inorg. Chem. 2010, 43, 4554–4559.

    Article  Google Scholar 

  66. Mori, K.; Kagohara, K.; Yamashita, H. Synthesis of tris(2, 2′-bipyridine)iron(II) complexes in zeolite Y cages: Influence of exchanged alkali metal cations on physicochemical properties and catalytic activity. J. Phys. Chem. C 2008, 112, 2593–2600.

    Article  CAS  Google Scholar 

  67. Mori, K.; Kawashima, M.; Kagohara, K.; Yamashita, H. Influence of exchanged alkali metal cations within zeolite Y cages on spectroscopic and photooxidation properties of the incorporated tris(2, 2′-bipyridine)ruthenium(II) complexes. J. Phys. Chem. C 2008, 112, 19449–19455.

    Article  CAS  Google Scholar 

  68. Lang, K.; Bezdička, P.; Bourdelande, J. L.; Hernando, J.; Jirka, I.; Káfuňková, E.; Kovanda, F.; Kubát, P.; Mosinger, J.; Wagnerová, D. M. Layered double hydroxides with intercalated porphyrins as photofunctional materials: Subtle structural changes modify singlet oxygen production. Chem. Mater. 2007, 13, 3822–3829.

    Article  Google Scholar 

  69. Demel, J.; Kubát, P.; Jirka, I.; Kovář, P.; Pospíšil, M.; Lang, K. Inorganic-organic hybrid materials: Layered zinc hydroxide salts with intercalated porphyrin sensitizers. J. Phys. Chem. C 2010, 114, 16321–16328.

    Article  CAS  Google Scholar 

  70. Zigler, D. F.; Morseth, Z. A.; Wang, L.; Ashford, D. L.; Brennaman, M. K.; Grumstrup, E. M.; Brigham, E. C.; Gish, M. K.; Dillon, R. J.; Alibabaei, L. et al. Disentangling the physical processes responsible for the kinetic complexity in interfacial electron transfer of excited Ru(II) polypyridyl dyes on TiO2. J. Am. Chem. Soc. 2016, 138, 4426–4438.

    Article  CAS  Google Scholar 

  71. Liu, Y. D.; Jiang, Y.; Li, F.; Yu, F. S.; Jiang, W. C.; Xia, L. X. Molecular cobalt salophen catalyst-integrated BiVO4 as stable and robust photoanodes for photoelectrochemical water splitting. J. Mater. Chem. A 2018, 6, 10761–10768.

    Article  CAS  Google Scholar 

  72. Li, L. Y.; Cui, C. Y.; Su, W. Y.; Wang, Y. X.; Wang, R. H. Hollow click-based porous organic polymers for heterogenization of [Ru(bpy)3]2+ through electrostatic interactions. Nano Res. 2016, 3, 779–786.

    Article  Google Scholar 

  73. Luo, Y.; Xu, Z. Y.; Wang, H.; Sun, X. W.; Li, Z. T.; Zhang, D. W. Porous Ru(bpy)32+-linked polymers for recyclable photocatalysis of enantioselective alkylation of aldehydes. ACS Macro Lett. 2020, 3, 90–95.

    Article  Google Scholar 

  74. Rakibuddin, M.; Gazi, S.; Ananthakrishnan, R. Iron(II) phenanthroline-resin hybrid as a visible light-driven heterogeneous catalyst for green oxidative degradation of organic dye. Catal. Commun. 2015, 58, 53–58.

    Article  CAS  Google Scholar 

  75. Héquet, V.; Le Cloirec, P.; Gonzalez, C.; Meunier, B. Photocatalytic degradation of atrazine by porphyrin and phthalocyanine complexes. Chemosphere 2000, 41, 379–386.

    Article  Google Scholar 

  76. Bozja, J.; Sherrill, J.; Michielsen, S.; Stojiljkovic, I. Porphyrin-based, light-activated antimicrobial materials. J. Polym. Sci., Part A:Polym. Chem. 2003, 41, 2297–2303.

    Article  CAS  Google Scholar 

  77. Huang, G.; Guo, C. C.; Tang, S. S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes. J. Mol. Catal. A:Chem. 2007, 261, 125–130.

    Article  CAS  Google Scholar 

  78. González-Muñoz, D.; Martín-Somer, A.; Strobl, K.; Cabrera, S.; De Pablo, P. J.; Díaz-Tendero, S.; Blanco, M.; Alemán, J. Enhancing visible-light photocatalysis via endohedral functionalization of single-walled carbon nanotubes with organic dyes. ACS Appl. Mater. Interfaces 2021, 13, 24877–24886.

    Article  Google Scholar 

  79. Baskaran, D.; Mays, J. W.; Zhang, X. P.; Bratcher, M. S. Carbon nanotubes with covalently linked porphyrin antennae: Photoinduced electron transfer. J. Am. Chem. Soc. 2005, 127, 6916–6917.

    Article  CAS  Google Scholar 

  80. Jia, F. M.; Wu, L.; Meng, J.; Yang, M.; Kong, H.; Liu, T. J.; Xu, H. Y. Preparation, characterization and fluorescent imaging of multi-walled carbon nanotube-porphyrin conjugate. J. Mater. Chem. 2009, 19, 8950–8957.

    Article  CAS  Google Scholar 

  81. Lipińska, M. E.; Rebelo, S. L. H.; Pereira, M. F. R.; Figueiredo, J. L.; Freire, C. Photoactive Zn(II)porphyrin-multi-walled carbon nanotubes nanohybrids through covalent β-linkages. Mater. Chem. Phys. 2013, 143, 296–304.

    Article  Google Scholar 

  82. Luo, Q.; Ge, R. Y.; Kang, S. Z.; Qin, L. X.; Li, G. D.; Li, X. Q. Fabrication mechanism and photocatalytic activity for a novel graphene oxide hybrid functionalized with tetrakis-(4-hydroxylphenyl)porphyrin and 1-pyrenesulfonic acid. Appl. Surf. Sci. 2018, 427, 15–23.

    Article  CAS  Google Scholar 

  83. Ge, R. Y.; Li, X. Q.; Kang, S. Z.; Qin, L. X.; Li, G. D. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer. Appl. Catal. B:Environ. 2016, 187, 67–74.

    Article  CAS  Google Scholar 

  84. Zhang, L. X.; Qin, L. X.; Kang, S. Z.; Li, G. D.; Li, X. Q. Graphene/pyridylporphyrin hybrids interfacially linked with rare earth ions for enhanced photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 8358–8366.

    Article  CAS  Google Scholar 

  85. Wang, H. X.; Zhou, K. G.; Xie, Y. L.; Zeng, J.; Chai, N. N.; Li, J.; Zhang, H. L. Photoactive graphene sheets prepared by “click” chemistry. Chem. Commun. 2011, 47, 5747–5749.

    Article  CAS  Google Scholar 

  86. Chen, D. M.; Wang, K. W.; Hong, W. Z.; Zong, R. L.; Yao, W. Q.; Zhu, Y. F. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal. B: Environ. 2015, 166–167, 366–373.

    Article  Google Scholar 

  87. Chen, X.; Lu, W. Y.; Xu, T. F.; Li, N.; Qin, D. D.; Zhu, Z. X.; Wang, G. Q.; Chen, W. X. A bio-inspired strategy to enhance the photocatalytic performance of g-C3N4 under solar irradiation by axial coordination with hemin. Appl. Catal. B:Environ. 2017, 201, 518–526.

    Article  CAS  Google Scholar 

  88. Zhao, G. X.; Pang, H.; Liu, G. G.; Li, P.; Liu, H. M.; Zhang, H. B.; Shi, L.; Ye, J. H. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl. Catal. B:Environ. 2017, 200, 141–149.

    Article  CAS  Google Scholar 

  89. Zhang, J. J.; Zhao, X.; Wang, Y. B.; Gong, Y.; Cao, D.; Qiao, M. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4. Appl. Catal. B:Environ. 2018, 237, 976–985.

    Article  CAS  Google Scholar 

  90. Xie, Y.; Ye, M. H.; Xiong, B.; Liu, B. Y.; Liu, F.; He, H. C.; Yang, L.; Jiang, L.; Dan, Y.; Zhou, Y. Enhanced reactive-oxygen-species generation and photocatalytic efficiency with internal imide structures of different ratio in metal-free perylene-g-C3N4 semiconductors. Appl. Surf. Sci. 2021, 546, 149138.

    Article  CAS  Google Scholar 

  91. Yang, L. P.; Dong, G. H.; Jacobs, D. L.; Wang, Y. H.; Zang, L.; Wang, C. Y. Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J. Cat. 2017, 352, 274–281.

    Article  CAS  Google Scholar 

  92. Hasobe, T.; Oki, H.; Sandanayaka, A. S. D.; Murata, H. Sonication-assisted supramolecular nanorods of meso-diaryl-substituted porphyrins. Chem. Commun. 2008, 724–726.

  93. Zhang, Z. J.; Zhu, Y. F.; Chen, X. J.; Zhang, H. J.; Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater. 2019, 31, 1806626.

    Article  Google Scholar 

  94. Zhang, Z. J.; Chen, X. J.; Zhang, H. J.; Liu, W. X.; Zhu, W.; Zhu, Y. F. A highly crystalline perylene imide polymer with the robust built-in electric field for efficient photocatalytic water oxidation. Adv. Mater. 2020, 32, 1907746.

    Article  CAS  Google Scholar 

  95. Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 13, 560–566.

    Article  Google Scholar 

  96. Tao, Z. J.; Li, R. F.; Xu, X.; Cao, A. H.; You, W. F.; He, Y.; Huang, W. F.; Kang, L. T.; Chen, X. Y. Controllable synthesis and effects of porphyrin copper nanostructures on photoelectric properties. Cryst. Growth Des. 2021, 21, 3582–3591.

    Article  CAS  Google Scholar 

  97. Sakuma, T.; Sakai, H.; Hasobe, T. Preparation and structural control of metal coordination-assisted supramolecular architectures of porphyrins. Nanocubes to microrods. Chem. Commun. 2012, 43, 4441–4443.

    Article  Google Scholar 

  98. Hu, J. S.; Guo; Liang, H. P.; Wan, L. J.; Jiang, L. Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms. J. Am. Chem. Soc. 2005, 127, 17090–17095.

    Article  CAS  Google Scholar 

  99. Kang, L. T.; Fu, H. B.; Cao, X. Q.; Shi, Q.; Yao, J. N. Controlled morphogenesis of organic polyhedral nanocrystals from cubes, cubooctahedrons, to octahedrons by manipulating the growth kinetics. J. Am. Chem. Soc. 2011, 133, 1895–1901.

    Article  CAS  Google Scholar 

  100. Gong, X. C.; Milic, T.; Xu, C.; Batteas, J. D.; Drain, C. M. Preparation and characterization of porphyrin nanoparticles. J. Am. Chem. Soc. 2002, 124, 14290–14291.

    Article  CAS  Google Scholar 

  101. Drain, C. M.; Smeureanu, G.; Patel, S.; Gong, X. C.; Garno, J.; Arijeloye, J. Porphyrin nanoparticles as supramolecular systems. New J. Chem. 2006, 30, 1834–1843.

    Article  CAS  Google Scholar 

  102. Wang, Z. C.; Li, Z. Y.; Medforth, C. J.; Shelnutt, J. A. Self-assembly and self-metallization of porphyrin nanosheets. J. Am. Chem. Soc. 2007, 129, 2440–2441.

    Article  CAS  Google Scholar 

  103. Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Amphiphilic porphyrin nanocrystals: Morphology tuning and hierarchical assembly. Adv. Mater. 2008, 20, 3543–3549.

    Article  CAS  Google Scholar 

  104. Zhang, S.; Nagai, K.; Yuan, N. Y.; Ding, J. N. Fullerene C60/phthalocyanine nanocomposites with heterojunction for application to visible-light-responsive photocatalysts. High Power Laser Part. Beams 2015, 27, 024141.

    Article  Google Scholar 

  105. Chiu, Y. C.; Chen, B. H.; Jan, D. J.; Tang, S. J.; Chiu, K. C. Growth behavior of cupc films by physical vapor deposition. Cryst. Res. Technol. 2011, 46, 295–299.

    Article  CAS  Google Scholar 

  106. Park, C.; Park, J. E.; Choi, H. C. Crystallization-induced properties from morphology-controlled organic crystals. Acc. Chem. Res. 2011, 47, 2353–2364.

    Article  Google Scholar 

  107. Northrup, J. E.; Tiago, M. L.; Louie, S. G. Surface energetics and growth of pentacene. Phys. Rev. B 2002, 66, 121404.

    Article  Google Scholar 

  108. Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, B.; Rashid, A. N.; Schitter, G. Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 2004, 96, 6431–6438.

    Article  CAS  Google Scholar 

  109. Ji, H. F.; Majithia, R.; Yang, X.; Xu, X. H.; More, K. Self-assembly of perylenediimide and naphthalenediimide nanostructures on glass substrates through deposition from the gas phase. J. Am. Chem. Soc. 2008, 130, 10056–10057.

    Article  CAS  Google Scholar 

  110. Shin, H. S.; Yoon, S. M.; Tang, Q.; Chon, B.; Joo, T.; Choi, H. C. Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process. Angew. Chem., Int. Ed. 2008, 47, 693–696.

    Article  CAS  Google Scholar 

  111. Gesquiere, A. J.; Uwada, T.; Asahi, T.; Masuhara, H.; Barbara, P. F. Single molecule spectroscopy of organic dye nanoparticles. Nano Lett. 2005, 5, 1321–1325.

    Article  CAS  Google Scholar 

  112. Yuan, X. J.; Floresyona, D.; Aubert, P. H.; Bui, T. T.; Remita, S.; Ghosh, S.; Brisset, F.; Goubard, F.; Remita, H. Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl. Catal. B:Environ. 2019, 242, 284–292.

    Article  CAS  Google Scholar 

  113. Li, P.; Xu, G. J.; Wang, N. N.; Guan, B.; Zhu, S. Q.; Chen, P. L.; Liu, M. H. 0D, 1D, and 2D supramolecular nanoassemblies of a porphyrin: Controllable assembly, and dimensionality-dependent catalytic performances. Adv. Funct. Mater. 2021, 31, 2100367.

    Article  CAS  Google Scholar 

  114. Tian, Z. Y.; Chen, Y.; Yang, W. S.; Yao, J. N.; Zhu, L. Y.; Shuai, Z. G. Low-dimensional aggregates from stilbazolium-like dyes. Angew. Chem., Int. Ed. 2004, 43, 4060–4063.

    Article  CAS  Google Scholar 

  115. Kakhki, R. M.; Tayebee, R.; Hedayat, S. Phthalhydrazide nanoparticles as new highly reusable organic photocatalyst in the photodegradation of organic and inorganic contaminants. Appl. Organomet. Chem. 2018, 32, e4033.

    Google Scholar 

  116. Wang, Y.; Deng, K.; Gui, L. L.; Tang, Y. C.; Zhou, J. W.; Cai, L. Y.; Qiu, J. B.; Ren, D. Y.; Wang, Y. Q. Preparation and characterization of nanoscopic organic semiconductor of oxovanadium phthalocyanine. J. Colloid Interface Sci. 1999, 213, 270–272.

    Article  CAS  Google Scholar 

  117. Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, X. J.; Wang, S. L.; Yan, W. Hybridization of g-C3N4 quantum dots with 1D branched TiO2 fiber for efficient visible light-driven photocatalytic hydrogen generation. Int. J. Hydrog. Energy 2020, 45, 13994–14005.

    Article  CAS  Google Scholar 

  118. Zimmerman, J. L.; Williams, R.; Khabashesku, V. N.; Margrave, J. L. Synthesis of spherical carbon nitride nanostructures. Nano Lett. 2001, 1, 731–734.

    Article  CAS  Google Scholar 

  119. Wang, T.; Nie, C. Y.; Ao, Z. M.; Wang, S. B.; An, T. C. Recent progress in g-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants. J. Mater. Chem. A 2020, 8, 485–502.

    Article  CAS  Google Scholar 

  120. Chava, R. K.; Im, Y.; Kang, M. Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Mater. Res. Bull. 2017, 94, 399–407.

    Article  CAS  Google Scholar 

  121. Zhan, Y.; Liu, Z. M.; Liu, Q. Q.; Huang, D.; Wei, Y.; Hu, Y. C.; Lian, X. J.; Hu, C. F. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J. Chem. 2017, 41, 3930–3938.

    Article  CAS  Google Scholar 

  122. You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. Highperformance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem. Mater. 2015, 27, 7636–7642.

    Article  CAS  Google Scholar 

  123. Duan, J. J.; Sun, Y. T.; Chen, S.; Chen, X. J.; Zhao, C. A zero-dimensional nickel, iron-metal-organic framework (MOF) for synergistic N2 electrofixation. J. Mater. Chem. A 2020, 8, 18810–18815.

    Article  CAS  Google Scholar 

  124. Okubo, M.; Minami, H.; Morikawa, K. Influence of shell strength on shape transformation of micron-sized, monodisperse, hollow polymer particles. Colloid Polym. Sci. 2003, 281, 214–219.

    Article  CAS  Google Scholar 

  125. Liu, Y. C.; Xu, Z.; Yang, Z.; Zhang, Y. X.; Cui, J.; He, Y. H.; Ye, H. C.; Zhao, K.; Sun, H. M.; Lu, R. et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging. Matter 2020, 3, 180–196.

    Article  Google Scholar 

  126. Marciniak, H.; Li, X. Q.; Würthner, F.; Lochbrunner, S. One-dimensional exciton diffusion in perylene bisimide aggregates. J. Phys. Chem. A 2011, 115, 648–654.

    Article  CAS  Google Scholar 

  127. Alvarez, L.; Fall, F.; Belhboub, A.; Le Parc, R.; Almadori, Y.; Arenal, R.; Aznar, R.; Dieudonné-George, P.; Hermet, P.; Rahmani, A. et al. One-dimensional molecular crystal of phthalocyanine confined into single-walled carbon nanotubes. J. Phys. Chem. A 2015, 119, 5203–5210.

    CAS  Google Scholar 

  128. Li, H. Y.; Tee, B. C. K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. N. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 2012, 134, 2760–2765.

    Article  CAS  Google Scholar 

  129. Kang, J. G.; Kim, J.; Jo, J. W.; Heo, J. S.; Kim, M. G.; Kim, Y. H.; Kim, J.; Park, S. K. Photochemical molecular tailoring for efficient diffusion and reorganization of organic nanocrystals for ultraflexible organic semiconductor arrays. Small 2017, 13, 1602467.

    Article  Google Scholar 

  130. Liu, Q.; Chen, C. C.; Yuan, K. J.; Sewell, C. D.; Zhang, Z. G.; Fang, X. M.; Lin, Z. Q. Robust route to highly porous graphitic carbon nitride microtubes with preferred adsorption ability via rational design of one-dimension supramolecular precursors for efficient photocatalytic CO2 conversion. Nano Energy 2020, 77, 105104.

    Article  CAS  Google Scholar 

  131. Gryn’ova, G.; Nicolaï, A.; Prlj, A.; Ollitrault, P.; Andrienko, D.; Corminboeuf, C. Charge transport in highly ordered organic nanofibrils: Lessons from modelling. J. Mater. Chem. C 2017, 5, 350–361.

    Article  Google Scholar 

  132. Kim, S. O.; An, T. K.; Chen, J.; Kang, I.; Kang, S. H.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. H-aggregation strategy in the design of molecular semiconductors for highly reliable organic thin film transistors. Adv. Funct. Mater. 2011, 21, 1616–1623.

    Article  CAS  Google Scholar 

  133. Wang, J.; Liu, D.; Zhou, Y. F.; Guan, S. Y.; Guan, S. Y. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl. Catal. B:Environ. 2018, 231, 251–261.

    Article  CAS  Google Scholar 

  134. Wang, J.; Shi, W.; Liu, D.; Zhang, Z. J.; Zhu, Y. F.; Wang, D. Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Appl. Catal. B:Environ. 2017, 202, 289–297.

    Article  CAS  Google Scholar 

  135. Raj, M. R.; Margabandu, R.; Mangalaraja, R. V.; Anandan, S. Influence of imide-substituents on the H-type aggregates of perylene diimides bearing cetyloxy side-chains at bay positions. Soft Matter 2017, 13, 9179–9191.

    Article  CAS  Google Scholar 

  136. Li, S. Y.; Long, T.; Wang, Y.; Yang, X. G. Self-assembly, protonation-dependent morphology, and photophysical properties of perylene bisimide with tertiary amine groups. Dyes Pigm. 2020, 173, 107896.

    Article  Google Scholar 

  137. Chen, Y. L.; Feng, Y. J.; Gao, J.; Bouvet, M. Self-assembled aggregates of amphiphilic perylene diimide-based semiconductor molecules: Effect of morphology on conductivity. J. Colloid Interface Sci. 2012, 368, 387–394.

    Article  CAS  Google Scholar 

  138. O’Brien, G. A.; Quinn, A. J.; Tanner, D. A.; Redmond, G. A single polymer nanowire photodetector. Adv. Mater. 2006, 18, 2379–2383.

    Article  Google Scholar 

  139. Kong, K. Y.; Zhang, S. C.; Chu, Y. M.; Hu, Y.; Yu, F. T.; Ye, H. N.; Ding, H. R.; Hua, J. L. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem. Commun. 2019, 55, 8090–8093.

    Article  CAS  Google Scholar 

  140. Patnaik, S.; Martha, S.; Parida, K. M. An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv. 2016, 6, 46929–46951.

    Article  CAS  Google Scholar 

  141. Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. Design and application of active sites in g-C3N4-based photocatalysts. J. Mater. Sci. Technol. 2020, 56, 69–88.

    Article  Google Scholar 

  142. Zhong, Q.; Li, Y.; Zhang, G. K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099.

    Article  CAS  Google Scholar 

  143. Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

    Article  CAS  Google Scholar 

  144. Ismael, M.; Wu, Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation. Sustainable Energy Fuels 2019, 3, 2907–2925.

    Article  CAS  Google Scholar 

  145. Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  CAS  Google Scholar 

  146. Zhao, Z. W.; Sun, Y. J.; Luo, Q.; Dong, F.; Li, H.; Ho, W. K. Mass-controlled direct synthesis of graphene-like carbon nitride nanosheets with exceptional high visible light activity. Less is better. Sci. Rep. 2015, 5, 14643.

    Article  CAS  Google Scholar 

  147. Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766–14772.

    Article  CAS  Google Scholar 

  148. Xu, H. F.; Zhu, G.; Hao, B. M. Metal-organic frameworks derived flower-like Co3O4/nitrogen doped graphite carbon hybrid for highperformance sodium-ion batteries. J. Mater. Sci. Technol. 2019, 35, 100–108.

    Article  CAS  Google Scholar 

  149. Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    Article  CAS  Google Scholar 

  150. Wang, X.; Zhang, X. L.; Zhou, W.; Liu, L. Q.; Ye, J. H.; Wang, D. F. An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light. Nano Energy 2019, 62, 250–258.

    Article  CAS  Google Scholar 

  151. He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

    Article  Google Scholar 

  152. Zhao, S. Y.; Li, S.; Zhao, Z. C.; Su, Y. P.; Long, Y. K.; Zheng, Z. Q.; Cui, D. L.; Liu, Y.; Wang, C. F.; Zhang, X. J.; Zhang, Z. T. Microwave-assisted hydrothermal assembly of 2D copper-porphyrin metal-organic frameworks for the removal of dyes and antibiotics from water. Environ. Sci. Pollut. Res. 2020, 27, 39186–39197.

    Article  CAS  Google Scholar 

  153. Xiao, Y. W.; Guo, W. X.; Chen, H. H.; Li, H. F.; Xu, X. J.; Wu, P.; Shen, Y.; Zheng, B.; Huo, F. W.; Wei, W. D. Ultrathin 2D Cu-porphyrin MOF nanosheets as a heterogeneous catalyst for styrene oxidation. Mater. Chem. Front. 2019, 3, 1580–1585.

    Article  CAS  Google Scholar 

  154. Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 53, 6430–6434.

    Article  Google Scholar 

  155. Pachfule, P.; Acharjya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140, 1423–1427.

    Article  CAS  Google Scholar 

  156. Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

    Article  CAS  Google Scholar 

  157. Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P. L.; Pattengale, B.; Liu, C. M.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J. et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

    Article  CAS  Google Scholar 

  158. Chen, Y. Z.; Li, A. X.; Li, Q.; Hou, X. M.; Wang, L. N.; Huang, Z. H. Facile fabrication of three-dimensional interconnected nanoporous N-TiO2 for efficient photoelectrochemical water splitting. J. Mater. Sci. Technol. 2018, 34, 955–960.

    Article  CAS  Google Scholar 

  159. Liu, W. Q.; Erol, O.; Gracias, D. H. 3D printing of an in situ grown MOF hydrogel with tunable mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 33267–33275.

    Article  CAS  Google Scholar 

  160. de Lima, H. H. C.; da Silva, C. T. P.; Kupfer, V. L.; de C. Rinaldi, J.; Kioshima, E. S.; Mandelli, D.; Guilherme, M. R.; Rinaldi, A. W. Synthesis of resilient hybrid hydrogels using UiO-66 MOFs and alginate (hydroMOFs) and their effect on mechanical and matter transport properties. Carbohydr. Polym. 2021, 251, 116977.

    Article  CAS  Google Scholar 

  161. Chen, Y. Z.; Huang, Z. H.; Yue, M. B.; Kang, F. Y. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale 2011, 6, 978–985.

    Article  Google Scholar 

  162. Keum, Y.; Kim, B.; Byun, A.; Park, J. Synthesis and photocatalytic properties of titanium-porphyrinic aerogels. Angew. Chem., Int. Ed. 2020, 59, 21591–21596.

    Article  CAS  Google Scholar 

  163. Li, X. R.; Li, Y. Y.; Huang, Y. X.; Zhang, T.; Liu, Y. Z.; Yang, B.; He, C. X.; Zhou, X. C.; Zhang, J. M. Organic sponge photocatalysis. Green Chem. 2017, 19, 2925–2930.

    Article  CAS  Google Scholar 

  164. Chava, R. K.; Do, J.; Kang, M. Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Appl. Catal. B:Environ. 2019, 248, 538–551.

    Article  CAS  Google Scholar 

  165. Kuehnel, M. F.; Orchard, K. L.; Dalle, K. E.; Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 2017, 139, 7217–7223.

    Article  CAS  Google Scholar 

  166. Xue, J. J.; Ma, S. S.; Zhou, Y. M.; Zhang, Z. W.; He, M. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl. Mater. Interfaces 2015, 7, 9630–9637.

    Article  CAS  Google Scholar 

  167. Chen, Y. Z.; Zhang, C. Y.; Zhang, X. J.; Ou, X. M.; Zhang, X. H. One-step growth of organic single-crystal p-n nano-heterojunctions with enhanced visible-light photocatalytic activity. Chem. Commun. 2013, 49, 9200–9202.

    Article  CAS  Google Scholar 

  168. Chen, Y. Z.; Li, A. X.; Yue, X. Q.; Wang, L. N.; Huang, Z. H.; Kang, F. Y.; Volinsky, A. A. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale 2016, 3, 13228–13235.

    Article  Google Scholar 

  169. Chen, Y. Z; Li, A. X.; Jin, M.; Wang, L. N.; Huang, Z. H. Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties. J. Mater. Sci. Technol. 2017, 33, 728–733.

    Article  CAS  Google Scholar 

  170. Shao, W.; Wang, L.; Wang, H.; Zhao, Z.; Zhang, X. D.; Jiang, S. L.; Chen, S. C.; Sun, X. S.; Zhang, Q.; Xie, Y. Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance. J. Phys. Chem. Lett. 2019, 10, 2904–2910.

    Article  CAS  Google Scholar 

  171. Wang, Y. C.; Zhou, J.; Hao, X. Q.; Wang, Y.; Zou, Z. G. Fabricating direct Z-scheme PTCDA/g-C3N4 photocatalyst based on interfacial strong interaction for efficient photooxidation of benzylamine. Appl. Surf. Sci. 2018, 456, 861–870.

    Article  CAS  Google Scholar 

  172. Zhu, K.; Zhang, M. Q.; Feng, X. Y.; Qin, L. X.; Kang, S. Z.; Li, X. Q. A novel copper-bridged graphitic carbon nitride/porphyrin nanocomposite with dramatically enhanced photocatalytic hydrogen generation. Appl. Catal. B:Environ. 2020, 268, 118434.

    Article  CAS  Google Scholar 

  173. Zhang, M. Q.; Zhu, K.; Qin, L. X.; Kang, S. Z.; Li, X. Q. Enhanced electron transfer and photocatalytic hydrogen production over the carbon nitride/porphyrin nanohybrid finely bridged by special copper. Catal. Sci. Technol. 2020, 10, 1640–1649.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (Nos. BK19AE027 and BK20BE022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingzhi Chen or Lu-ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Dong, J., Chen, Y. et al. Organic photocatalysts: From molecular to aggregate level. Nano Res. 15, 3835–3858 (2022). https://doi.org/10.1007/s12274-022-4098-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4098-8

Keywords

Navigation