Skip to main content
Log in

Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, Li-CO2 battery has gradually become a research hotspot due to its high discharge capacity, energy density and environmental benefits. However, it has been an important problem for researchers because of its slow decomposition kinetics and difficult to generalize to practical application. Herein, we prepared copper polyphthalocyanine-carbon nanotubes composites (CuPPc-CNTs) by solvothermal in-situ polymerization of copper phthalocyanine on the surface of carbon nanotubes as cathode for reversible Li-CO2 batteries, which exhibits a high discharge capacity of 18,652.7 mAh·g−1 at current density of 100 mA·g−1, 1.64 V polarization at 1,000 mA·g−1, and a stable cycles number of 160 is close to 1,630 h of charge-discharge process at 200 mA·g−1. Copper polyphthalocyanine has highly efficient copper single-atom catalytic sites with excellent CO2 adsorption and activation, while carbon nanotubes provide a conductive network. The synergistic effect of the two compounds enables it to have excellent catalytic activity. The density functional theory (DFT) calculation proved that the addition of copper polyphthalocyanine significantly improved the CO2 adsorption and activation process. This study provides an opportunity for the research of covalent organic polymers (COPs) single-atom catalyst in Li-CO2 battery field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matter, J. M.; Stute, M.; Snæbjörnsdottir, S. Ó.; Oelkers, E. H.; Gislason, S. R.; Aradottir, E. S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E. et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016, 352, 1312–1314.

    Article  CAS  Google Scholar 

  2. Sharifian, R.; Wagterveld, R. M.; Digdaya, I. A.; Xiang, C.; Vermaas, D. A. Electrochemical carbon dioxide capture to close the carbon cycle. Energy Environ. Sci. 2014, 14, 781–814.

    Article  Google Scholar 

  3. Li, S. W.; Dong, Y.; Zhou, J. W.; Liu, Y.; Wang, J. M.; Gao, X.; Han, Y. Z.; Qi, P. F.; Wang, B. Carbon dioxide in the cage: Manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy Environ. Sci. 2018, 11, 1318–1325.

    Article  CAS  Google Scholar 

  4. Takechi, K.; Shiga, T.; Asaoka, T. A Li-O2/CO2 battery. Chem. Commun. 2011, 47, 3463–3465.

    Article  CAS  Google Scholar 

  5. Liu, Y. L.; Wang, R.; Lyu, Y. C.; Li, H.; Chen, L. Q. Rechargeable Li/CO2-O2 (2:1) battery and Li/CO2 battery. Energy Environ. Sci. 2014, 7, 677–681.

    Article  CAS  Google Scholar 

  6. Xu, S. M.; Das, S. K.; Archer, L. A. The Li-CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656–6660.

    Article  CAS  Google Scholar 

  7. Li, Y. C.; Zhou, J. W.; Zhang, T. B.; Wang, T. S.; Li, X. L.; Jia, Y. F.; Cheng, J. L.; Guan, Q.; Liu, E. Z.; Peng, H. S. et al. Highly surface-wrinkled and N-doped CNTs anchored on metal wire: A novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1808117.

    Article  Google Scholar 

  8. Ling, C.; Zhang, R. G.; Takechi, K.; Mizuno, F. Intrinsic barrier to electrochemically decompose Li2CO3 and LiOH. J. Phys. Chem. C 2014, 118, 26591–26598.

    Article  CAS  Google Scholar 

  9. Zhang, Z.; Zhang, Q.; Chen, Y. A.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem., Int. Ed. 2015, 54, 6550–6553.

    Article  CAS  Google Scholar 

  10. Li, X. L.; Zhou, J. W.; Zhang, J. X.; Li, M.; Bi, X. X.; Liu, T. C.; He, T.; Cheng, J. L.; Zhang, F.; Li, Y. P. et al. Bamboo-like nitrogen-doped carbon nanotube forests as durable metal-free catalysts for self-powered flexible Li-CO2 batteries. Adv. Mater. 2019, 31, 1903852.

    Article  Google Scholar 

  11. Zhang, Z.; Bai, W. L.; Cai, Z. P.; Cheng, J. H.; Kuang, H. Y.; Dong, B. X.; Wang, Y. B.; Wang, K. X.; Chen, J. S. Enhanced electrochemical performance of aprotic Li-CO2 batteries with a ruthenium-complex-based mobile catalyst. Angew. Chem., Int. Ed. 2021, 133, 16540–16544.

    Article  Google Scholar 

  12. Wang, C. Y.; Zhang, Q. M.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small 2018, 14, 1800641.

    Article  Google Scholar 

  13. Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Z. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene. J. Mater. Chem. A 2018, 6, 3218–3223.

    Article  CAS  Google Scholar 

  14. Ma, W. Q.; Lu, S. S.; Lei, X. F.; Liu, X. Z.; Ding, Y. Porous Mn2O3 cathode for highly durable Li-CO2 batteries. J. Mater. Chem. A 2018, 6, 20829–20835.

    Article  CAS  Google Scholar 

  15. Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. High performance Li-CO2 batteries with NiO-CNT cathodes. J. Mater. Chem. A 2018, 6, 2792–2796.

    Article  CAS  Google Scholar 

  16. Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 2018, 5, 1700567.

    Article  Google Scholar 

  17. Li, X.; Wang, H.; Chen, Z. X.; Xu, H. S.; Yu, W.; Liu, C. B.; Wang, X. W.; Zhang, K.; Xie, K. Y.; Loh, K. P. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, 1905879.

    Article  CAS  Google Scholar 

  18. Zhang, Y.; Zhong, R. L.; Lu, M.; Wang, J. H.; Jiang, C.; Gao, G. K.; Dong, L. Z.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Single metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS Cent. Sci. 2021, 7, 175–182.

    Article  CAS  Google Scholar 

  19. Hou, Y. Y.; Wang, J. Z.; Liu, L. Q.; Liu, Y. Q.; Chou, S. L.; Shi, D. Q.; Liu, H. K.; Wu, Y. P.; Zhang, W. M.; Chen J. Mo2C/CNT: An efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

    Article  Google Scholar 

  20. Zhang, Z.; Yang, C.; Wu, S. S.; Wang, A. N.; Zhao, L. L.; Zhai, D. D.; Ren, B.; Cao, K. Z.; Zhou, Z. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries. Adv. Energy Mater. 2019, 9, 1802805.

    Article  Google Scholar 

  21. Zhang, B. W.; Jiao, Y.; Chao, D. L.; Ye, C.; Wang, Y. X.; Davey, K.; Liu, H. K.; Dou, S. X.; Qiao, S. Z. Targeted synergy between adjacent Co atoms on graphene oxide as an efficient new electrocatalyst for Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1904206.

    Article  CAS  Google Scholar 

  22. Chen, J. M.; Zou, K. Y.; Ding, P.; Deng, J.; Zha, C. Y.; Hu, Y. P.; Zhao, X.; Wu, J. L.; Fan, J.; Li, Y. G. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li-CO2 batteries. Adv. Mater. 2019, 31, 1805484.

    Article  Google Scholar 

  23. Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

    Article  CAS  Google Scholar 

  24. Liu, J. J.; Yang, D.; Zhou, Y.; Zhang, G.; Xing, G. L.; Liu, Y. P.; Ma, Y. H.; Terasaki, O.; Yang, S. B.; Chen, L. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 14473–14479.

    Article  CAS  Google Scholar 

  25. Zeng, Y. F.; Zou, R. Q.; Zhao, Y. L. Covalent organic frameworks for CO2 capture. Angew. Chem., Int. Ed. 2016, 28, 2855–2873.

    CAS  Google Scholar 

  26. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 11, 1016–1028.

    Article  Google Scholar 

  27. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  28. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: https://doi.org/10.1007/M2274-021-3794-0.

  29. Jeong, G. H.; Tan, Y. C.; Song, J. T.; Lee, G. Y.; Lee, H. J.; Lim, J.; Jeong, H. Y.; Won, S.; Oh, J.; Kim, S. O. Synthetic multiscale design of nanostructured Ni single atom catalyst for superior CO2 electroreduction. Chem. Eng. J. 2021, 426, 131063.

    Article  Google Scholar 

  30. Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

    Article  CAS  Google Scholar 

  31. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    Article  CAS  Google Scholar 

  32. Yang, X. P.; Chen, Y. L.; Qin, L.; Wu, X. N.; Wu, Y. T.; Yan, T.; Geng, Z. G.; Zeng, J. Boost selectivity of HCOO using anchored Bi single atoms towards CO2 reduction. ChemSusChem 2020, 13, 6307–6311.

    CAS  Google Scholar 

  33. Hu, C. G.; Gong, L. L.; Xiao, Y.; Yuan, Y. F.; Bedford, N. M.; Xia, Z. H.; Ma, L.; Wu, T. P.; Lin, Y.; Connell, J. W.; Shahbazian-Yassar, R.; Lu, J.; Amine, K.; Dai, L. M. High-performance, longlife, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv. Mater. 2020, 32, 1907436.

    Article  CAS  Google Scholar 

  34. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    Article  CAS  Google Scholar 

  35. Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

    Article  CAS  Google Scholar 

  36. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 1, 3161–3194.

    Article  Google Scholar 

  37. Paul, S.; Kao, Y. L.; Ni, L. M.; Ehnert, R.; Herrmann-Geppert, I.; Van De Krol, R.; Stark, R. W.; Jaegermann, W.; Kramm, U. I.; Bogdanoff, P. Influence of the metal center in M-N-C catalysts on the CO2 reduction reaction on gas diffusion electrode. ACS Catal. 2021, 11, 5850–5864.

    Article  CAS  Google Scholar 

  38. Wöhrle, D.; Preußner, E. Polymeric phthalocyanines and their precursors, 7. Synthesis and analytical characterization of polymers from 1, 2, 4, 5-benzenetetracarboxylic acid derivatives. Makromolekulare Chem. 1985, 186, 2189–2207.

    Article  Google Scholar 

  39. Strohmeier, B. R.; Levden, D. E.; Field, R. S.; Hercules, D. M. Surface spectroscopic characterization of CuAl2O3 catalysts. J. Catal. 1985, 94, 514–530.

    Article  CAS  Google Scholar 

  40. Robert, T.; Offergeld, G. Spectres de photoélectrons X de composés solides de cuivre Relation entre la présence de raies satellites et l’état d’oxydation du cuivre. Phys. Status Solidi 1972, 11, 277–282.

    Article  Google Scholar 

  41. Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

    Article  CAS  Google Scholar 

  42. Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

    CAS  Google Scholar 

  43. Yao, K. P. C.; Kwabi, D. G.; Quinlan, R. A.; Mansour, A. N.; Grimaud, A.; Lee, Y. L.; Lu, Y. C.; Shao-Horn, Y. Thermal stability of Li2O2 and Li2O for Li-air batteries: In situ XRD and XPS studies. J. Electrochem. Soc. 2013, 160, A824–A831.

    Article  CAS  Google Scholar 

  44. Asadi, M.; Sayahpour, B.; Abbasi, P.; Ngo, A. T.; Karis, K.; Jokisaari, J. R.; Liu, C.; Narayanan, B.; Gerard, M.; Yasaei, P. et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere. Nature 2018, 555, 502–506.

    Article  CAS  Google Scholar 

  45. Zhang, X.; Zhang, Q.; Zhang, Z.; Chen, Y. N.; Xie, Z. J.; Wei, J. P.; Zhou, Z. Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. Chem. Commun. 2015, 51, 14636–14639.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this work from the Natural Science Foundation of Jiangsu Province (Nos. BK20190413 and BK20210616), the National Defense Technology Innovation Special Zone Spark Project (No. 2016300TS00911901), the China Postdoctoral Science Foundation (No. 2019M661825), the Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies (EEST2021-2), the Funding of Research and Practice Innovation Program in NUAA for Graduate Education (No. xcxjh20210605) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Electronic Supplementary Material

12274_2021_4052_MOESM1_ESM.pdf

Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Jiang, C., Gong, H. et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries. Nano Res. 15, 4100–4107 (2022). https://doi.org/10.1007/s12274-021-4052-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4052-1

Keywords

Navigation