Skip to main content
Log in

Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly active and durable Pd-based electrocatalysts for ethanol oxidation reaction (EOR) play a crucial role in the commercialization of direct ethanol fuel cells (DEFCs). However, the poisonous intermediates (especially adsorbed CO species (COad)) formed during the EOR process can easily adsorb and block the active sites on Pd electrodes, which in turn limits the catalytic efficiency. Hence, we present a series of Pd-based composites with a strong coupling interface consisting of Pd nanosheets and amorphous Bi(OH)3 species. The incorporation of Bi(OH)3 can induce an electron-rich state adjacent to the Pd sites and effectively separate the Pd ensemble, leading to excellent CO tolerance. The optimal Pd-Bi(OH)3 NSs catalyst manifests a mass activity of 2.2 A·mgPd−1, which is 5.7 and 2.0 times higher than that of Pd NSs and commercial Pd/C catalyst, respectively. Further CO-stripping experiments and CO-DRIFTS tests confirm the excellent CO tolerance on Pd-Bi(OH)3 NSs electrode, leading to the enhanced EOR durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  CAS  Google Scholar 

  2. Bai, J.; Liu, D. Y.; Yang, J.; Chen, Y. Nanocatalysts for electrocatalytic oxidation of ethanol. ChemSusCeem 2019, 12, 2117–2132.

    Article  CAS  Google Scholar 

  3. Bai, S. X.; Xu, Y.; Cao, K. L.; Huang, X. Q. Selective ethanol oxidation reaction at the Rh-SnO2 irrtrfacee. Adv. Mater. 2021, 33, 2005767.

    Article  CAS  Google Scholar 

  4. Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

    Article  Google Scholar 

  5. Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.

    Article  CAS  Google Scholar 

  6. Wang, H.; Jusys, Z.; Behm, R. J. Ethanol electrooxidation on a carbon-supported Pt catalyst: Reaction kinetics and product yields. J. Phyu. Chem. B 2004, 108, 19413–19424.

    Article  CAS  Google Scholar 

  7. Monyoncho, E. A.; Steinmann, S. N.; Michel, C.; Baranova, E. A.; Woo, T. K.; Sautet, P. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): Why is it difficult to break the C-C bond? ACS Catal. 2016, 6, 4894–4906.

    Article  CAS  Google Scholar 

  8. Rizo, R.; Aran-Ais, R. M.; Padgett, E.; Muller, D. A.; Lázaro, M. J.; Solla-Gullón, J.; Feliu, J. M.; Pastor, E.; Abruña, H. D. Pt-richcore/Sn-richsubsurface/Ptskin nanocubes as highly active and stable electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2018, 140, 3791–3797.

    Article  CAS  Google Scholar 

  9. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 31, 2003300.

    Article  Google Scholar 

  10. Han, S. H.; Liu, H. M.; Chen, P.; Jiang, J. X.; Chen, Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 2018, 8, 1801326.

    Article  Google Scholar 

  11. Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325–330.

    Article  CAS  Google Scholar 

  12. Zhang, L. L.; Chang, Q. W.; Chen, H. M.; Shao, M. H. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219.

    Article  CAS  Google Scholar 

  13. Yang, Y. Y.; Ren, J.; Li, Q. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. Electrocatalysis of ethanol on a Pd electrode in alkaline media: An in uitu attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal. 2014, 4, 798–803.

    Article  CAS  Google Scholar 

  14. Zhang, Y.; Yuan, X. L.; Lyu, F. L.; Wang, X. C.; Jiang, X. J.; Cao, M. H.; Zhang, Q. Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Met. 2020, 39, 792–799.

    Article  CAS  Google Scholar 

  15. Kang, Y. Q.; Xue, Q.; Zhao, Y.; Li, X. F.; Jin, P. J.; Chen, Y. Selective etching induced synthesis of hollow Rh nanospheres electrocatalyst for alcohol oxidation reactions. Small 2018, 14, 1801239.

    Article  Google Scholar 

  16. Zhang, J. W.; Ye, J. Y.; Fan, Q. Y.; Jiang, Y. T.; Zhu, Y. F.; Li, H. Q.; Cao, Z. M.; Kuang, Q.; Cheng, J.; Zheng, J. et al. Cyclic penta-twinned rhodium nanobranches as superior catalysts for ethanol electro-oxidation. J. Am. Chem. Soc. 2018, 140, 11232–11240.

    Article  CAS  Google Scholar 

  17. Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem. Mater. 2010, 22, 2395–2402.

    Article  CAS  Google Scholar 

  18. Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

    Article  CAS  Google Scholar 

  19. Ren, L.; Yang, L. F.; Yu, P.; Wang, Y. X.; Mao, L. Q. Electrochemical post-treatment of infinite coordination polymers: An effective route to preparation of Pd nanoparticles supported onto carbon nanotubes with enhanced electrocatalytic activity toward ethanol oxidation. ACS Appl. Mater. Interfaces 2013, 5, 11471–11478.

    Article  CAS  Google Scholar 

  20. Zhou, Z. Y.; Wang, Q.; Lin, J. L.; Tian, N.; Sun, S. G. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media. Electrochimi. Acta 2010, 55, 7995–7999.

    Article  CAS  Google Scholar 

  21. Wu, H. X.; Li, H. J.; Zhai, Y. J.; Xu, X. L.; Jin, Y. D. Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation. Adv. Mater. 2012, 14, 1594–1597.

    Article  Google Scholar 

  22. Tiwari, J. N.; Dang, N. K.; Park, H. J.; Sultan, S.; Kim, M. G.; Haiyan, J.; Lee, Z.; Kim, K. S. Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium-cobalt phosphide nanoparticles. Nano Energy 2020, 78, 105166.

    Article  CAS  Google Scholar 

  23. Peng, C.; Hu, Y. L.; Liu, M. R.; Zheng, Y. X. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media. J. Power Sources 2005, 278, 69–75.

    Article  Google Scholar 

  24. Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

    Article  Google Scholar 

  25. Chen, J. Y.; Li, Y.; Lu, N. L.; Tian, C. H.; Han, Z. D.; Zhang, L.; Fang, Y.; Qian, B.; Jiang, X. F.; Cui, R. J. Nanoporous PdCe bimetallic nanocubes with high catalytic activity towards ethanol electro-oxidation and the oxygen reduction reaction in alkaline media. J. Mater. Chem. A 2018, 6, 23560–23568.

    Article  CAS  Google Scholar 

  26. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    Article  CAS  Google Scholar 

  27. Liu, P.; Nerskov, J. K. Ligand and ensemble effects in adsorption on alloy surfaces. Phys. Chem. Chem. Phys. 2001, 3, 3814–3818.

    Article  CAS  Google Scholar 

  28. Loffreda, D.; Simon, D.; Sautet, P. Dependence of stretching frequency on surface coverage and adsorbate-adsorbate interactions: A density-functional theory approach of CO on Pd (111). Surf. Sci. 1999, 425, 68–80.

    Article  CAS  Google Scholar 

  29. Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core-shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.

    Article  Google Scholar 

  30. Yang, M.; Lao, X. Z.; Sun, J.; Ma, N.; Wang, S. Q.; Ye, W. N.; Guo, P. Z. Assembly of bimetallic PdAg nanosheets and their enhanced electrocatalytic activity toward ethanol oxidation. Langmuir 2020, 36, 11094–11101.

    Article  CAS  Google Scholar 

  31. De, A.; Datta, J. Synergistic combination of Pd and Co catalyst nanoparticles over self-designed MnO2 structure: Green synthetic approach and unprecedented electrode kinetics in direct ethanol fuel cell. ACS Sustainable Chem. Eng. 2018, 6, 13706–13718.

    Article  CAS  Google Scholar 

  32. Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Q. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9030–9035.

    Article  CAS  Google Scholar 

  33. Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

    Article  CAS  Google Scholar 

  34. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  35. Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.

    Article  CAS  Google Scholar 

  36. Antolini, E. Palladium in fuelcell catalysis. Energy Environ. Sci. 2009, 2, 915–931.

    Article  CAS  Google Scholar 

  37. Xu, C. W.; Tian, Z. Q.; Shen, P. K.; Jiang, S. P. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimi. Acta 2008, 53, 2610–2618.

    Article  CAS  Google Scholar 

  38. Abdel Hameed, R. M. Facile preparation of Pd-metal oxide/C electrocatalysts and their application in the electrocatalytic oxidation of ethanol. Appl. Surf. Sci. 2017, 411, 91–104.

    Article  CAS  Google Scholar 

  39. Gao, Q.; Mou, T. Y.; Liu, S. K.; Johnson, G.; Han, X.; Yan, Z. H.; Ji, M. X.; He, Q.; Zhang, S.; Xin, H. L. et al. Monodisperse PdSn/SnO, core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. J. Mater. Chem. A 2020, 8, 20931–20938.

    Article  CAS  Google Scholar 

  40. Zhang, B. W.; Jiang, Y. X.; Ren, J.; Qu, X. M.; Xu, G. L.; Sun, S. G. PtBi intermetallic and PtBi intermetallic with the Bi-rich surface supported on porous graphitic carbon towards HCOOH electro-oxidation. Electrochimi. Acta 2015, 162, 254–262.

    Article  CAS  Google Scholar 

  41. Yuan, X. L.; Jiang, B.; Cao, M. H.; Zhang, C. Y.; Liu, X. Z.; Zhang, Q. H.; Lyu, F. L.; Gu, L.; Zhang, Q. Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 2020, 13, 265–272.

    Article  CAS  Google Scholar 

  42. Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

    Article  Google Scholar 

  43. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol. 2011, 6, 28–32.

    Article  CAS  Google Scholar 

  44. Ding, Y.; Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Atomic structure of Au-Pd bimetallic alloyed nanoparticles. J. Am. Chem. Soc. 2010, 132, 12480–12486.

    Article  CAS  Google Scholar 

  45. Chen, Z. L.; Zhang, J. F.; Zhang, Y.; Liu, Y. W.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy 2017, 42, 353–362.

    Article  CAS  Google Scholar 

  46. Yuan, X. L.; Zhang, Y.; Cao, M. H.; Zhou, T.; Jiang, X. J.; Chen, J. X.; Lyu, F. L.; Xu, Y.; Luo, J.; Zhang, Q. et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 2019, 19, 4752–4759.

    Article  CAS  Google Scholar 

  47. Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, P. B. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 2014, 136, 3937–3945.

    Article  CAS  Google Scholar 

  48. Casella, I. G.; Contursi, M. Characterization of bismuth adatom-modified palladium electrodes: The electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions. Electrochim. Acta 2006, 52, 649–657.

    Article  CAS  Google Scholar 

  49. Wang, X. C.; Xie, M.; Lyu, F. L.; Yiu, Y. M.; Wang, Z. Q.; Chen, J. T.; Chang, L. Y.; Xia, Y. J.; Zhong, Q. X.; Chu, M. Y. et al. Bismuth oxyhydroxide-Pt inverse interface for enhanced methanol electrooxidation performance. Nano Lett. 2020, 20, 7751–7759.

    Article  CAS  Google Scholar 

  50. Su, Y. Z.; Xiao, K.; Li, N.; Liu, Z. Q.; Qiao, S. Z. Amorphous Ni(OH)2 @ three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 13845–13853.

    Article  CAS  Google Scholar 

  51. Lou, B. H.; Kang, H. Q.; Yuan, W. T.; Ma, L.; Huang, W. X.; Wang, Y.; Jiang, Z.; Du, Y. H.; Zou, S. H.; Fan, J. Highly selective acetylene semihydrogenation catalyst with an operation window exceeding 150 °C. ACS Catal. 2021, 11, 6073–6080.

    Article  CAS  Google Scholar 

  52. Bistoni, G.; Rampino, S.; Scafuri, N.; Ciancaleoni, G.; Zuccaccia, D.; Belpassi, L.; Tarantelli, F. How n back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chem. Sci. 2016, 7, 1174–1184.

    Article  CAS  Google Scholar 

  53. Zou, S. H.; Lou, B. H.; Yang, K. R.; Yuan, W. T.; Zhu, C. Z.; Zhu, Y. H.; Du, Y. H.; Lu, L. F.; Liu, J. J.; Huang, W. X. et al. Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat. Commun. 2021, 12, 5770.

    Article  CAS  Google Scholar 

  54. Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 2004, 108, 8234–8240.

    Article  CAS  Google Scholar 

  55. Du, W. X.; Wang, Q.; Saxner, D.; Deskins, N. A.; Su, D.; Krzanowski, J. E.; Frenkel, A. I.; Teng, X. W. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15172–15183.

    Article  CAS  Google Scholar 

  56. Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.

    Article  CAS  Google Scholar 

  57. Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.

    Article  CAS  Google Scholar 

  58. Chung, D. Y.; Lee, K. J.; Sung, Y. E. Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation. J. Phys. Chem. C 2016, 120, 9028–9035.

    Article  CAS  Google Scholar 

  59. Zhang, B. W.; Sheng, T.; Wang, Y. X.; Qu, X. M.; Zhang, J. M.; Zhang, Z. C.; Liao, H. G.; Zhu, F. C.; Dou, S. X.; Jiang, Y. X. et al. Platinum-cobalt bimetallic nanoparticles with Pt skin for electro-oxidation of ethanol. ACS Catal. 2016, 7, 892–895.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51922073 and 21902109), the Natural Science Foundation of Jiangsu Province (Nos. BK20200960 and BK20180097), the Natural Science Foundation of Higher Education in Jiangsu Province (No. 20KJB150041), and the Natural Science Foundation of Nantong University for High-Level Talent (No. 03083033). We also acknowledge the financial support from the 111 Project, Collaborative Innovation Center of Suzhou Nano Science, Technology (NANO-CIC) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengwei Deng or Xiaolei Yuan.

Electronic Supplementary Material

12274_2021_4049_MOESM1_ESM.pdf

Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, M., Huang, J., Gong, J. et al. Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 15, 3920–3926 (2022). https://doi.org/10.1007/s12274-021-4049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4049-9

Keywords

Navigation