Skip to main content
Log in

Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The widespread application of direct ethanol fuel cells is hampered due to the low activity, high cost and poor operation durability of electrocatalysts for ethanol oxidation reaction (EOR). Herein, we report a one-pot synthetic method to synthesize PdPb3 nanochains with well-defined shape, size and composition via a solution-phase reduction method. The morphology, composition distribution and structure characteristics of PdPb3 nanochains were investigated by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Thanks to the unique structure, the as-obtained PdPb3 nanochains can manifest much higher mass activity (2523 mA·mg−1) and higher operation durability than commercial Pd/C (1272 mA·mg−1) during the EOR measurements. More importantly, further CO-stripping measurements indicate that the incorporation of Pb species could favor the oxidative removal of CO intermediates on the Pd electrode at the negative potential and enhance the EOR activity and stability, making it possible to develop highly active and durable electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dutta A, Ouyang JY. Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 2015;5(2):1371.

    CAS  Google Scholar 

  2. Bianchini C, Shen PK. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev. 2009;109(9):4183.

    CAS  Google Scholar 

  3. Wu FX, Zhang DT, Peng MH, Yu ZH, Wang XY, Guo GS, Sun YG. Microfluidic synthesis enables dense and uniform loading of surfactant-free PtSn nanocrystals on carbon supports for enhanced ethanol oxidation. Angew Chem Int Ed. 2016;55(16):4952.

    CAS  Google Scholar 

  4. Duan SB, Wang RM. Nanomaterials composed of noble metals and transition metal compounds: interface structure control and in-situ characterization at atomic scale. Chin J Rare Met. 2019;43(11):1179.

    Google Scholar 

  5. Ye SH, Feng JX, Li GR. Pd nanoparticle/CoP nanosheet hybrids: highly electroactive and durable catalysts for ethanol electrooxidation. ACS Catal. 2016;6(11):7962.

    CAS  Google Scholar 

  6. Lee MJ, Kang JS, Kang YS, Chung DY, Shin H, Ahn CY, Park S, Kim MJ, Kim S, Lee KS, Sung YE. Understanding the bifunctional effect for removal of CO poisoning: blend of a platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal. 2016;6(4):2398.

    CAS  Google Scholar 

  7. Chen YS, Cao YD, Ran R, Wu XD, Weng D. Controlled pore size of Pt/KIT-6 used for propane total oxidation. Rare Met. 2018;37(2):132.

    Google Scholar 

  8. Bi CX, Feng C, Miao TT, Song YH, Wang DY, Xia HB. Understanding the effect of ultrathin AuPd alloy shells of irregularly shaped Au@AuPd nanoparticles with high-index facets on enhanced performance of ethanol oxidation. Nanoscale. 2015;7(47):20105.

    CAS  Google Scholar 

  9. Wu P, Huang YY, Zhou LQ, Wang YB, Bu YK, Yao JN. Nitrogen-doped graphene supported highly dispersed palladium-lead nanoparticles for synergetic enhancement of ethanol electrooxidation in alkaline medium. Electrochim Acta. 2015;152:68.

    CAS  Google Scholar 

  10. Dutta A, Adhikary R, Broekmann P, Datta J. Intelligent catalytic support by Ni/NiO/Ni(OH)2 in low level of Pd/Pt boosting the performance of alkaline DEFC. Appl Catal B. 2019;257:117847.

    CAS  Google Scholar 

  11. Puangsombut P, Tantavichet N. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt-Co catalysts. Rare Met. 2019;38(2):95.

    CAS  Google Scholar 

  12. Yuan XL, Jiang XJ, Cao MH, Chen L, Nie KQ, Zhang Y, Xu Y, Sun XH, Li YG, Zhang Q. Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 2019;12(2):429.

    CAS  Google Scholar 

  13. Xu CW, Shen PK, Liu YL. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources. 2007;164(2):527.

    CAS  Google Scholar 

  14. Zhang LL, Chang QW, Chen HM, Shao MH. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy. 2016;29:198.

    CAS  Google Scholar 

  15. Xu ML. Electrocatalytic performance of Pd-Ni nanowire arrays electrode for methanol electrooxidation in alkaline media. Rare Met. 2014;33(1):65.

    Google Scholar 

  16. Yi QF, Sun LZ. In situ synthesis of palladium nanoparticles on multi-walled carbon nanotubes and their electroactivity for ethanol oxidation. Rare Met. 2013;32(6):586.

    CAS  Google Scholar 

  17. Lv H, Wang Y, Lopes A, Xu DD, Liu B. Ultrathin PdAg single-crystalline nanowires enhance ethanol oxidation electrocatalysis. Appl Catal B. 2019;249:116.

    CAS  Google Scholar 

  18. Li ZJ, Chen YF, Fu GT, Chen Y, Sun DM, Lee JM, Tang YW. Porous PdRh nanobowls: facile synthesis and activity for alkaline ethanol oxidation. Nanoscale. 2019;11(6):2974.

    CAS  Google Scholar 

  19. Xu CW, Tian ZQ, Shen PK, Jiang SP. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta. 2008;53(5):2610.

    CAS  Google Scholar 

  20. Wang W, Lv F, Lei B, Wan S, Luo MC, Guo SJ. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv Mater. 2016;28(46):10117.

    CAS  Google Scholar 

  21. Singh BK, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01205-6.

    Article  Google Scholar 

  22. Zhang N, Feng YG, Zhu X, Guo SJ, Guo J, Huang XQ. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv Mater. 2017;29(7):1603774.

    Google Scholar 

  23. Hong W, Wang J, Wang E. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015;8(7):2308.

    CAS  Google Scholar 

  24. Koenigsmann C, Wong SS. One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci. 2011;4(4):1161.

    CAS  Google Scholar 

  25. Li HH, Ma SY, Fu QQ, Liu XJ, Wu L, Yu SH. Scalable bromide-triggered synthesis of Pd@Pt core-shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J Am Chem Soc. 2015;137(24):7862.

    CAS  Google Scholar 

  26. Liu XH, Ning LN, Deng M, Wu JY, Zhu AM, Zhang QG, Liu QL. Self-recoverable Pd-Ru/TiO2 nanocatalysts with ultrastability towards ethanol electrooxidation. Nanoscale. 2019;11(7):3311.

    CAS  Google Scholar 

  27. Wang AL, He XJ, Lu XF, Xu H, Tong YX, Li GR. Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed. 2015;54(12):3669.

    CAS  Google Scholar 

  28. Ahmed MS, Jeon S. Highly active graphene-supported NixPd100-x binary alloyed catalysts for electro-oxidation of ethanol in an alkaline media. ACS Catal. 2014;4(6):1830.

    CAS  Google Scholar 

  29. Serov A, Asset T, Padilla M, Matanovic I, Martinez U, Roy A, Artyushkova K, Chatenet M, Maillard F, Bayer D, Cremers C, Atanassov P. Highly-active Pd-Cu electrocatalysts for oxidation of ubiquitous oxygenated fuels. Appl Catal B. 2016;191:76.

    CAS  Google Scholar 

  30. Jiang KZ, Wang PT, Guo SJ, Zhang X, Shen X, Lu G, Su D, Huang XQ. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew Chem Int Ed. 2016;55(31):9030.

    CAS  Google Scholar 

  31. Huang WJ, Ma XY, Wang H, Feng RF, Zhou JG, Duchesne PN, Zhang P, Chen FJ, Han N, Zhao FP, Zhou JH, Cai WB, Li YG. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv Mater. 2017;29(37):1703057.

    Google Scholar 

  32. Yuan XL, Zhang Y, Cao MH, Zhou T, Jiang XJ, Chen JN, Lyu FL, Xu Y, Luo J, Zhang Q, Yin YD. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 2019;19(7):4752.

    CAS  Google Scholar 

  33. Yang PP, Yuan XL, Hu HC, Liu YL, Zheng HW, Yang D, Chen L, Cao MH, Xu Y, Min Y, Li YG, Zhang Q. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv Funct Mater. 2018;28(1):1704774.

    Google Scholar 

  34. Huang WJ, Wang HT, Zhou JG, Wang J, Duchesne PN, Muir D, Zhang P, Han N, Zhao FP, Zeng M, Zhong J, Jin CH, Li YG, Lee ST, Dai HJ. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat Commun. 2015;6(1):10035.

    CAS  Google Scholar 

  35. Bu LZ, Guo SJ, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao JL, Guo J, Huang XQ. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat Commun. 2016;7(1):11850.

    CAS  Google Scholar 

  36. Bu LZ, Tang CY, Shao Q, Zhu X, Huang XQ. Three-dimensional Pd3Pb nanosheet assemblies: high-performance non-Pt electrocatalysts for bifunctional fuel cell reactions. ACS Catal. 2018;8(5):4569.

    CAS  Google Scholar 

  37. Cui ZM, Chen H, Zhao MT, DiSalvo FJ. High-performance Pd3Pb intermetallic catalyst for electrochemical oxygen reduction. Nano Lett. 2016;16(4):2560.

    CAS  Google Scholar 

  38. Qiu XY, Dai YX, Tang YW, Lu TH, Wei SH, Chen Y. One-pot synthesis of gold-palladium@palladium core-shell nanoflowers as efficient electrocatalyst for ethanol electrooxidation. J Power Sources. 2015;278:430.

    CAS  Google Scholar 

  39. Shen SY, Zhao TS, Xu JB, Li YS. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources. 2010;195(4):1001.

    CAS  Google Scholar 

  40. Yang WH, Zhang QH, Wang HH, Zhou ZY, Sun SG. Preparation and utilization of a sub-5 nm PbO2 colloid as an excellent co-catalyst for Pt-based catalysts toward ethanol electro-oxidation. New J Chem. 2017;41(20):12123.

    CAS  Google Scholar 

  41. Guo JS, Chen RR, Zhu FH, Sun SG, Villullas HM. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl Catal B. 2018;224:602.

    CAS  Google Scholar 

  42. Xiong ZP, Zhang K, Wang CQ, Shiraishi Y, Guo J, Du YK. Highly enhanced ethanol electrocatalytic activity of PdPb network nanocomposites achieved by a small amount platinum modification. Colloids Surf A. 2016;502:13.

    CAS  Google Scholar 

  43. Tiwari JN, Lee WG, Sultan S, Yousuf M, Harzandi AM, Vij V, Kim KS. High-affinity-assisted nanoscale alloys as remarkable bifunctional catalyst for alcohol oxidation and oxygen reduction reactions. ACS Nano. 2017;11(8):7729.

    CAS  Google Scholar 

  44. Lu YZ, Jiang YY, Wu HB, Chen W. Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J Phys Chem C. 2013;117(6):2926.

    CAS  Google Scholar 

  45. Huang WJ, Kang XL, Xu C, Zhou JH, Deng J, Li YG, Cheng S. 2D PdAg alloy nanodendrites for enhanced ethanol electroxidation. Adv Mater. 2018;30(11):1706962.

    Google Scholar 

  46. Monyoncho EA, Steinmann SN, Michel C, Baranova EA, Woo TK, Sautet P. Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): why is it difficult to break the C-C bond. ACS Catal. 2016;6(8):4894.

    CAS  Google Scholar 

  47. Zhang ZQ, Wu Q, Mao K, Chen YG, Du LY, Bu YF, Zhuo O, Yang LJ, Wang XZ, Hu Z. Efficient ternary synergism of platinum/tin oxide/nitrogen-doped carbon leading to high-performance ethanol oxidation. ACS Catal. 2018;8(9):8477.

    CAS  Google Scholar 

  48. Hu FP, Chen CL, Wang ZY, Wei GY, Shen PK. Mechanistic study of ethanol oxidation on Pd-NiO/C electrocatalyst. Electrochim Acta. 2006;52(3):1087.

    CAS  Google Scholar 

  49. Lu C, Rice C, Masel RI, Babu PK, Waszczuk P, Kim HS, Oldfield E, Wieckowski A. UHV, electrochemical NMR, and electrochemical studies of platinum/ruthenium fuel cell catalysts. J Phys Chem B. 2002;106(37):9581.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21673150, 21703146 and 51802206), the Natural Science Foundation of Jiangsu Province (Nos. BK20180097 and BK20180846), the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (111 Project), the Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 980 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yuan, XL., Lyu, FL. et al. Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Met. 39, 792–799 (2020). https://doi.org/10.1007/s12598-020-01442-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01442-0

Keywords

Navigation