Skip to main content
Log in

Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heteroatom doping carbon materials exhibit a huge application potential for energy storage devices (ESDs). Herein, interconnected N/P co-doped carbon nanocage (NP-CNC) was synthesized from pyrene molecules by using nano-MgO as template and melamine-phytic acid supramolecular aggregate as dopant coupled with KOH activation. The as-prepared NP-CNC possesses interconnected nanocages for electron transportation and abundant micropores for ion adsorption. Moreover, co-doped N/P species in NP-CNC provide active sites and additional pseudocapacitance. Consequently, NP-CNC as electrode material for symmetric supercapacitor exhibits a high gravimetric capacitance of 435 F·g−1 at 0.05 A·g−1, high volumetric capacitance of 274 F·cm−3 at 0.032 A·cm−3, and long cycle lifespan with 96.1% capacitance retention after 50,000 cycles. Furthermore, NP-CNC as cathode for zinc-ion hybrid supercapacitor delivers satisfactory energy and power densities of 130.6 Wh·kg−1 (82.3 Wh·L−1) and 14.4 kW·kg−1 (9.1 kW·L−1). This work paves a promising approach to the preparation of high capacitance NP-CNC for ESDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C. J.; Liu, F.; Chen, J. S.; Yuan, Z. W.; Liu, C.; Zhang, X. S.; Xu, M. Y.; Wei, L.; Chen, Y. A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 2020, 32, 448–457.

    Article  Google Scholar 

  2. Gou, Q. Z.; Zhao, S.; Wang, J. C.; Li, M.; Xue, J. M. Recent advances on boosting the cell voltage of aqueous supercapacitors. Nano-Micro Lett. 2020, 12, 98.

    Article  CAS  Google Scholar 

  3. Zhao, J.; Jiang, Y. F.; Fan, H.; Liu, M.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Yang, L. J.; Ma, Y. W.; Hu, Z. Porous 3D few-layer graphenelike carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 2017, 29, 1604569.

    Article  Google Scholar 

  4. Zuo, W. H.; Li, R. Z.; Zhou, C.; Li, Y. Y.; Xia, J. L.; Liu, J. P. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 2017, 4, 1600539.

    Article  Google Scholar 

  5. Yan, R. Y.; Antonietti, M.; Oschatz, M. Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy Mater. 2018, 8, 1800026.

    Article  Google Scholar 

  6. Liu, M. Y.; Niu, J.; Zhang, Z. P.; Dou, M. L.; Wang, F. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 2018, 51, 366–372.

    Article  CAS  Google Scholar 

  7. Zhong, C.; Deng, Y. D.; Hu, W. B.; Qiao, J. L.; Zhang, L.; Zhang, J. J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539.

    Article  CAS  Google Scholar 

  8. Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

    Article  CAS  Google Scholar 

  9. Li, Z. W.; An, Y. F.; Dong, S. Y.; Chen, C. J.; Wu, L. Y.; Sun, Y.; Zhang, X. G. Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Mater. 2020, 31, 252–266.

    Article  Google Scholar 

  10. Dong, L. B.; Yang, W.; Yang, W.; Li, Y.; Wu, W. J.; Wang, G. X. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 2019, 7, 13810–13832.

    Article  CAS  Google Scholar 

  11. Lu, Y. Y.; Li, Z. W.; Bai, Z. Y.; Mi, H. Y.; Ji, C. C.; Pang, H.; Yu, C.; Qiu, J. S. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy 2019, 66, 104132.

    Article  CAS  Google Scholar 

  12. Li, Z. W.; Chen, D. H.; An, Y. F.; Chen, C. L.; Wu, L. Y.; Chen, Z. J.; Sun, Y.; Zhang, X. G. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Mater. 2020, 28, 307–314.

    Article  CAS  Google Scholar 

  13. Liu, P. G.; Liu, W. F.; Huang, Y. P.; Li, P. L.; Yan, J.; Liu, K. Y. Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-ion energy storage. Energy Storage Mater. 2020, 25, 858–865.

    Article  CAS  Google Scholar 

  14. Zhang, H. Z.; Liu, Q. Y.; Fang, Y. B.; Teng, C. L.; Liu, X. Q.; Fang, P. P.; Tong, Y. X.; Lu, X. H. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

    Article  CAS  Google Scholar 

  15. Tian, W. J.; Zhang, H. Y.; Duan, X. G.; Sun, H. Q.; Shao, G. S.; Wang, S. B. Porous carbons: Structure-oriented design and versatile applications. Adv. Funct. Mater. 2020, 30, 1909265.

    Article  CAS  Google Scholar 

  16. Yan, J.; Li, S. H.; Lan, B. B.; Wu, Y. C.; Lee, P. S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564.

    Article  CAS  Google Scholar 

  17. Xie, X. Y.; He, X. J.; Zhang, H. F.; Wei, F.; Xiao, N.; Qiu, J. S. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem. Eng. J. 2018, 350, 49–56.

    Article  CAS  Google Scholar 

  18. Diez, N.; Sevilla, M.; Fuertes, A. B. Synthesis strategies of templated porous carbons beyond the silica nanocasting technique. Carbon 2021, 178, 451–476.

    Article  CAS  Google Scholar 

  19. Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem., Int. Ed. 2021, 60, 5114–5120.

    Article  CAS  Google Scholar 

  20. Kado, Y.; Soneda, Y. Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Micropor. Mesopor. Mater. 2021, 310, 110646.

    Article  CAS  Google Scholar 

  21. Bu, Y. F.; Sun, T.; Cai, Y. J.; Du, L. Y.; Zhuo, O.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitors. Adv. Mater. 2017, 29, 1700470.

    Article  Google Scholar 

  22. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

    Article  CAS  Google Scholar 

  23. Fan, H.; Wang, Y.; Gao, F. J.; Yang, L. Q.; Liu, M.; Du, X.; Wang, P.; Yang, L. J.; Wu, Q.; Wang, X. Z. et al. Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. J. Energy Chem. 2019, 34, 64–71.

    Article  Google Scholar 

  24. Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536–544.

    Article  CAS  Google Scholar 

  25. Ghosh, S.; Barg, S.; Jeong, S. M.; Ostrikov, K. K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 2020, 10, 2001239.

    Article  CAS  Google Scholar 

  26. Li, Y.; Shan, Y. Y.; Pang, H. Design and synthesis of nitrogen-doped hexagonal NiCoO nanoplates derived from Ni-Co-MOF for highperformance electrochemical energy storage. Chin. Chem. Lett. 2020, 31, 2280–2286.

    Article  CAS  Google Scholar 

  27. Liu, B. Q.; Zhang, Q.; Wang, Z.; Li, L.; Jin, Z. S.; Wang, C. G.; Zhang, L. Y.; Chen, L. H.; Su, Z. M. Nitrogen and sulfur-codoped porous carbon nanospheres with hierarchical micromesoporous structures and an ultralarge pore volume for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 8225–8232.

    Article  CAS  Google Scholar 

  28. Cui, C. X.; Gao, Y.; Li, J.; Yang, C.; Liu, M.; Jin, H. L.; Xia, Z. H.; Dai, L. M.; Lei, Y.; Wang, J. C. et al. Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem., Int. Ed. 2020, 59, 7928–7933.

    Article  CAS  Google Scholar 

  29. Bi, H. H.; He, X. J.; Zhang, H. F.; Li, H. Q.; Xiao, N.; Qiu, J. S. N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renew. Energy 2021, 170, 188–196.

    Article  CAS  Google Scholar 

  30. Zhang, Y.; Sun, Q.; Xia, K. S.; Han, B.; Zhou, C. G.; Gao, Q.; Wang, H. Q.; Pu, S.; Wu, J. P. Facile synthesis of hierarchically porous N/P codoped carbon with simultaneously high-level heteroatom-doping and moderate porosity for high-performance supercapacitor electrodes. ACS Sustainable Chem. Eng. 2019, 7, 5717–5726.

    Article  CAS  Google Scholar 

  31. Jin, J. T.; Qiao, X. C.; Zhou, F.; Wu, Z. S.; Cui, L. F.; Fan, H. B. Interconnected phosphorus and nitrogen codoped porous exfoliated carbon nanosheets for high-rate supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 17317–17325.

    Article  CAS  Google Scholar 

  32. Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N, P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 55, 2230–2234.

    Article  CAS  Google Scholar 

  33. Dong, S. A.; He, X. J.; Zhang, H. F.; Xie, X. Y.; Yu, M. X.; Yu, C.; Xiao, N.; Qiu, J. S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960.

    Article  CAS  Google Scholar 

  34. Yao, B.; Peng, H. R.; Zhang, H. Z.; Kang, J. Z.; Zhu, C.; Delgado, G.; Byrne, D.; Faulkner, S.; Freyman, M.; Lu, X. H. et al. Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 2021, 21, 3731–3737.

    Article  CAS  Google Scholar 

  35. Shang, Z.; An, X. Y.; Zhang, H.; Shen, M. X.; Baker, F.; Liu, Y. X.; Liu, L. Q.; Yang, J.; Cao, H. B.; Xu, Q. L. et al. Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon 2020, 161, 62–70.

    Article  CAS  Google Scholar 

  36. Gao, S. S.; Tang, Y. K.; Wang, L.; Liu, L.; Sun, Z. P.; Wang, S.; Zhao, H. Y.; Kong, L. B.; Jia, D. Z. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3255–3263.

    Article  CAS  Google Scholar 

  37. Gopalakrishnan, A.; Raju, T. D.; Badhulika, S. Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 2020, 168, 209–219.

    Article  CAS  Google Scholar 

  38. Zhao, G. Y.; Chen, C.; Yu, D. F.; Sun, L.; Yang, C. H.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for highperformance supercapacitors. Nano Energy 2018, 47, 547–555.

    Article  CAS  Google Scholar 

  39. Quiroz-Cardoso, O.; Oros-Ruiz, S.; Solís-Gómez, A.; López, R.; Gómez, R. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel 2019, 237, 227–235.

    Article  CAS  Google Scholar 

  40. Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.

    Article  Google Scholar 

  41. Song, Z. Y.; Duan, H.; Zhu, D. Z.; Lv, Y. K.; Xiong, W.; Cao, T. C.; Li, L. C.; Liu, M. X.; Gan, L. H. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a “water-in-salt” gel electrolyte. J. Mater. Chem. A 2019, 7, 15801–15811.

    Article  CAS  Google Scholar 

  42. Wei, W.; Chen, Z. J.; Zhang, Y.; Chen, J.; Wan, L.; Du, C.; Xie, M. J.; Guo, X. F. Full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor. J. Energy Chem. 2020, 48, 277–284.

    Article  Google Scholar 

  43. Li, X. X.; Zhu, P. Y.; Li, Q.; Xu, Y. X.; Zhao, Y.; Pang, H. Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution. Rare Met. 2020, 39, 680–687.

    Article  CAS  Google Scholar 

  44. Wang, Y. H.; Liu, R. N.; Tian, Y. D.; Sun, Z.; Huang, Z. H.; Wu, X. L.; Li, B. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J. 2020, 384, 123263.

    Article  CAS  Google Scholar 

  45. He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

    Article  CAS  Google Scholar 

  46. Ma, C. R.; Yang, H. J.; Xu, Z. X.; Fu, Z. G.; Xie, Y. Y.; Zhang, H. T.; Hong, M.; Ma, Z. F.; Xiong, H.; Yuan, X. Z. Insights into high capacity and ultrastable carbonaceous anodes for potassium-ion storage via a hierarchical heterostructure. J. Mater. Chem. A 2020, 8, 2836–2842.

    Article  CAS  Google Scholar 

  47. Wei, F.; He, X. J.; Ma, L. B.; Zhang, H. F.; Xiao, N.; Qiu, J. S. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 2020, 12, 82.

    Article  CAS  Google Scholar 

  48. Cheng, J. X.; Lu, Z. J.; Zhao, X. F.; Chen, X. X.; Liu, Y. H. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. J. Power Sources 2021, 494, 229770.

    Article  CAS  Google Scholar 

  49. Liu, F. Y.; Wang, Z. X.; Zhang, H. T.; Jin, L.; Chu, X.; Gu, B. N.; Huang, H. C.; Yang, W. Q. Nitrogen, oxygen and sulfur co-doped hierarchical porous carbons toward high-performance supercapacitors by direct pyrolysis of kraft lignin. Carbon 2019, 149, 105–116.

    Article  CAS  Google Scholar 

  50. Miao, Y. L.; Ma, Y. L.; Wang, Q. Plasma-assisted simultaneous reduction and nitrogen/sulfur codoping of graphene oxide for high-performance supercapacitors. ACS Sustainable Chem. Eng. 2019, 7, 7597–7608.

    Article  CAS  Google Scholar 

  51. Shao, J. Q.; Song, M. Y.; Wu, G.; Zhou, Y. H.; Wan, J. F.; Ren, X.; Ma, F. W. 3D carbon nanocage networks with multiscale pores for high-rate supercapacitors by flower-like template and in-situ coating. Energy Storage Mater. 2018, 13, 57–65.

    Article  Google Scholar 

  52. Wang, J. G.; Liu, H. Z.; Zhang, X. Y.; Shao, M. H.; Wei, B. Q. Elaborate construction of N/S-co-doped carbon nanobowls for ultrahigh-power supercapacitors. J. Mater. Chem. A 2018, 6, 17653–17661.

    Article  CAS  Google Scholar 

  53. Zheng, L. P.; Tang, B.; Dai, X. C.; Xing, T.; Ouyang, Y. H.; Wang, Y.; Chang, B. B.; Shu, H. B.; Wang, X. Y. High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chem. Eng. J. 2020, 399, 125671.

    Article  CAS  Google Scholar 

  54. Zhang, X. H.; Li, H. X.; Qin, B.; Wang, Q.; Xing, X. H.; Yang, D. H.; Jin, L. E.; Cao, Q. Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors. J. Mater. Chem. A 2019, 7, 3298–3306.

    Article  CAS  Google Scholar 

  55. Zhang, Y.; Liu, L.; Zhang, P. X.; Wang, J.; Xu, M.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Ultra-high surface area and nitrogen-rich porous carbons prepared by a low-temperature activation method with superior gas selective adsorption and outstanding supercapacitance performance. Chem. Eng. J. 2019, 355, 309–319.

    Article  CAS  Google Scholar 

  56. Xu, P.; Gao, Q. M.; Ma, L.; Li, Z. Y.; Zhang, H.; Xiao, H.; Liang, X.; Zhang, T. F.; Tian, X. H.; Liu, C. H. A high surface area N-doped holey graphene aerogel with low charge transfer resistance as high performance electrode of non-flammable thermostable supercapacitors. Carbon 2019, 149, 452–461.

    Article  CAS  Google Scholar 

  57. Liu, T. Y.; Zhou, Z. P.; Guo, Y. C.; Guo, D.; Liu, G. L. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nat. Commun. 2019, 10, 675.

    Article  CAS  Google Scholar 

  58. Wu, S. L.; Chen, Y. T.; Jiao, T. P.; Zhou, J.; Cheng, J. Y.; Liu, B.; Yang, S. R.; Zhang, K. L.; Zhang, W. J. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80,000 cycles. Adv. Energy Mater. 2019, 9, 1902915.

    Article  CAS  Google Scholar 

  59. Yin, J.; Zhang, W. L.; Wang, W. X.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705.

    Article  CAS  Google Scholar 

  60. Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Extremely safe, highrate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 2018, 13, 96–102.

    Article  Google Scholar 

  61. Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

    Article  CAS  Google Scholar 

  62. Zheng, Y. W.; Zhao, W.; Jia, D. D.; Liu, Y.; Cui, L.; Wei, D.; Zheng, R. K.; Liu, J. Q. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 2020, 387, 124161.

    Article  CAS  Google Scholar 

  63. Deng, X. Y.; Li, J. J.; Shan, Z.; Sha, J. W.; Ma, L. Y.; Zhao, N. Q. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. J. Mater. Chem. A 2020, 8, 11617–11625.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from the National Natural Science Foundation of China (Nos. 51872005, 52072002, and U1710116) and the WanJiang Scholar Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun He, Changzhou Yuan or Jieshan Qiu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., He, X., Wei, Y. et al. Interconnected N/P co-doped carbon nanocage as high capacitance electrode material for energy storage devices. Nano Res. 15, 4068–4075 (2022). https://doi.org/10.1007/s12274-021-4003-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4003-x

Keywords

Navigation