Skip to main content
Log in

Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the past decades, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) basically enjoy the coordination chemistry and covalent chemistry, respectively, and such uniqueness has become the major obstacle hampering their further scope diversity and application multi-functionalization. Inspired from the principle of organic retrosynthesis, combining coordination bond and covalent bond together offers additional opportunities for constructing novel MOFs, COFs and MOF@COF hybrids as well as confer on them superior performances in versatile application fields. In this review, we firstly classify and summarize the recently reported synthesis strategies based on the integration of metal-ligand coordination and dynamic covalent bonds. Then, the application performances of as-constructed MOFs, COFs as well as MOF@COF hybrids are discussed and highlighted in the fields of adsorption, separation, catalysis, biosensing, energy storage and so on. Last, our personal insights of the remaining challenges and further prospects are also provided, in order to trigger much more inspirations and endeavors for this hot research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wächter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

    Article  CAS  Google Scholar 

  2. Chen, Z. J.; Hanna, S. L.; Redfern, L. R.; Alezi, D.; Islamoglu, T.; Farha, O. K. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coord. Chem. R ev. 2019, 386, 32–49.

    Article  CAS  Google Scholar 

  3. Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

    Article  Google Scholar 

  4. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

    Article  Google Scholar 

  5. Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

    Article  CAS  Google Scholar 

  6. Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

    Article  CAS  Google Scholar 

  7. O’Keeffe, M.; Yaghi, O. M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702.

    Article  Google Scholar 

  8. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  Google Scholar 

  9. Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

    Article  Google Scholar 

  10. Wang, Y. F.; Li, Y. X.; Wang, Z. Y.; Allan, P.; Zhang, F. C.; Lu, Z. G. Reticular chemistry in electrochemical carbon dioxide reduction. S ci. China Mater. 2020, 63, 1113–1141.

    Article  CAS  Google Scholar 

  11. Kirchon, A.; Feng, L.; Drake, H. F.; Joseph, E. A.; Zhou, H. C. From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. R ev. 2018, 47, 8611–8638.

    Article  CAS  Google Scholar 

  12. Howarth, A. J.; Liu, Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    Article  CAS  Google Scholar 

  13. Peh, S. B.; Karmakar, A.; Zhao, D. Multiscale design of flexible metal-organic frameworks. Trends Chem. 2020, 2, 199–213.

    Article  CAS  Google Scholar 

  14. Wang, X.; She, P. F.; Zhang, Q. C. Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat 2021, 2, 299–325.

    Article  Google Scholar 

  15. Bisbey, R. P.; Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. S ci. 2017, 3, 533–543.

    Article  CAS  Google Scholar 

  16. Li, X. L.; Cai, S. L.; Sun, B.; Yang, C. Q.; Zhang, J.; Liu, Y. Chemically robust covalent organic frameworks: Progress and perspective. Matter 2020, 3, 1507–1540.

    Article  Google Scholar 

  17. Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Chen, Y. Z.; Li, Z. E.; Xie, S. L.; He, T.; Lu, Z.; Yang, H.; Jiang, D. L. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

    Article  CAS  Google Scholar 

  18. Qi, H. Y.; Liang, B. K.; Kaiser, U. Perspective towards atomic-resolution imaging of two-dimensional polymers. SmartMat 2021, 2, 131–138.

    Article  Google Scholar 

  19. Yuan, S.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Fang, Y.; Lollar, C.; Pang, J. D.; Zhang, L. L.; Sun, D. et al. Retrosynthesis of multi-component metal-organic frameworks. Nat. Commun. 2018, 9, 808.

    Article  Google Scholar 

  20. Nguyen, H. L.; Gándara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. A titanium-organic framework as an exemplar of combining the chemistry of metal- and covalent-organic frameworks. J. Am. Chem. Soc. 2016, 138, 4330–4333.

    Article  CAS  Google Scholar 

  21. Wang, Y. X.; Zhao, X.; Yang, H. J.; Bu, X. H.; Wang, Y.; Jia, X. X.; Li, J. P.; Feng, P. Y. A tale of two trimers from two different worlds: A COF-inspired synthetic strategy for pore-space partitioning of MOFs. Angew. Chem., Int. Ed. 2019, 58, 6316–6320.

    Article  CAS  Google Scholar 

  22. Wei, R. J.; Zhou, H. G.; Zhang, Z. Y.; Ning, G. H.; Li, D. Copper(I)-organic frameworks for catalysis: Networking metal clusters with dynamic covalent chemistry. CCS Chem. 2021, 3, 2045–2053.

    Article  CAS  Google Scholar 

  23. Xu, W. T.; Pei, X. K.; Diercks, C. S.; Lyu, H.; Ji, Z.; Yaghi, O. M. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte. J. Am. Chem. Soc. 2019, 141, 17522–17526.

    Article  CAS  Google Scholar 

  24. Liu, Y. Z.; Ma, Y. H.; Zhao, Y. B.; Sun, X. X.; Gándara, F.; Furukawa, H.; Liu, Z.; Zhu, H. Y.; Zhu, C. H.; Suenaga, K. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 2016, 351, 365–369.

    Article  CAS  Google Scholar 

  25. Liu, Y. Z.; Yaghi, O. M. Metal coordination as a template strategy to make resilient woven materials. Bull. Jpn. Soc. Coord. Che m. 2018, 71, 12–17.

    Article  Google Scholar 

  26. Xu, H. S.; Luo, Y.; Li, X.; See, P. Z.; Chen, Z. X.; Ma, T. Q.; Liang, L.; Leng, K.; Abdelwahab, I.; Wang, L. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 2020, 11, 1434.

    Article  CAS  Google Scholar 

  27. Peng, Y. W.; Zhao, M. T.; Chen, B.; Zhang, Z. C.; Huang, Y.; Dai, F. N.; Lai, Z. C.; Cui, X. Y.; Tan, C. L.; Zhang, H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Adv. Mater. 2018, 30, 1705454.

    Article  Google Scholar 

  28. Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106–12110.

    Article  CAS  Google Scholar 

  29. Zhou, W. Q.; Liu, Y.; Teo, W. L.; Chen, B.; Jin, F. C.; Zhang, L. Y.; Zeng, Y. F.; Zhao, Y. L. Construction of a sandwiched MOF@COF composite as a size-selective catalyst. Cell Rep. Phys. Sci. 2020, 1, 100272.

    Article  CAS  Google Scholar 

  30. Feng, L.; Wang, K. Y.; Lv, X. L.; Yan, T. H.; Li, J. R.; Zhou, H. C. Modular total synthesis in reticular chemistry. J. Am. Chem. So c. 2020, 142, 3069–3076.

    Article  CAS  Google Scholar 

  31. Wu, M. X.; Wang, Y.; Zhou, G. H.; Liu, X. M. Sparks from different worlds: Collaboration of MOFs and COFs. Coord. Chem. Rev. 2021, 430, 213735.

    Article  CAS  Google Scholar 

  32. Li, Y.; Karimi, M.; Gong, Y. N.; Dai, N.; Safarifard, V.; Jiang, H. L. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter 2021, 4, 2230–2265.

    Article  CAS  Google Scholar 

  33. Park, H.; Kwon, O.; Kim, J. Computational identification of connected MOF@COF materials. J. Phys. Chem. C 2021, 125, 5897–5903.

    Article  CAS  Google Scholar 

  34. Chen, Z. M.; Li, X. L.; Yang, C. Q.; Cheng, K. P.; Tan, T. W.; Lv, Y. Q.; Liu, Y. Hybrid porous crystalline materials from metal organic frameworks and covalent organic frameworks. Adv. Sci. 2021, 8, 2101883.

    Article  CAS  Google Scholar 

  35. Woellner, M.; Hausdorf, S.; Klein, N.; Mueller, P.; Smith, M. W.; Kaskel, S. Adsorption and detection of hazardous trace gases by metal-organic frameworks. Adv. Mater. 2018, 30, 1704679.

    Article  Google Scholar 

  36. Wang, H.; Lustig, W. P.; Li, J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 4729–4756.

    Article  CAS  Google Scholar 

  37. Dou, Y. B.; Grande, C.; Kaiser, A.; Zhang, W. J. Highly structured metal-organic framework nanofibers for methane storage. Sci. China Mater. 2021, 64, 1742–1750.

    Article  CAS  Google Scholar 

  38. Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.

    Article  Google Scholar 

  39. Hosono, N.; Uemura, T. Metal-organic frameworks for macromolecular recognition and separation. Matter 2020, 3, 652–663.

    Article  Google Scholar 

  40. Gao, M. Y.; Song, B. Q.; Sensharma, D.; Zaworotko, M. J. Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat 2021, 2, 38–55.

    Article  Google Scholar 

  41. Chen, L. Y.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57–89.

    Article  Google Scholar 

  42. Peng, Y.; Yang, W. S. Metal-organic framework nanosheets: A class of glamorous low-dimensional materials with distinct structural and chemical natures. Sci. China Che m. 2019, 62, 1561–1575.

    Article  CAS  Google Scholar 

  43. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

    Article  CAS  Google Scholar 

  44. Corma, A.; García, H.; Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 2010, 110, 4606–4655.

    Article  CAS  Google Scholar 

  45. Shi, W. J.; Zeng, L. Z.; Cao, L. Y.; Huang, Y.; Wang, C.; Lin, W. B. Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination. Nano Res. 2021, 14, 473–478.

    Article  CAS  Google Scholar 

  46. Shen, Y.; Pan, T.; Wang, L.; Ren, Z.; Zhang, W. N.; Huo, F. W. Programmable logic in metal-organic frameworks for catalysis. Adv. Mater. 2021, 33, 2007442.

    Article  CAS  Google Scholar 

  47. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Article  Google Scholar 

  48. Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Lu, Q. C.; Zhang, Q. H.; Gu, L.; Wang, X. Enhancing CO2 electrocatalysis on 2D porphyrin-based metal-organic framework nanosheets coupled with visible-light. Small Methods 2021, 5, 2000991.

    Article  CAS  Google Scholar 

  49. Wang, Q.; Shang, L.; Sun-Waterhouse, D.; Zhang, T. R.; Waterhouse, G. Engineering local coordination environments and site_densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat 2021, 2, 154–175.

    Article  Google Scholar 

  50. Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Tabassum, H.; Gao, S.; Zou, R. Q. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020, 5, 520–532.

    Article  CAS  Google Scholar 

  51. Liu, J. L.; Zhu, D. D.; Guo, C. X.; Vasileff, A.; Qiao, S. Z. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 2017, 7, 1700518.

    Article  Google Scholar 

  52. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. E d. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  53. Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2021, 143, 8829–8837.

    Article  CAS  Google Scholar 

  54. Zhang, J. H.; Yang, W.; Zhang, M.; Wang, H. J.; Si, R.; Zhong, D. C.; Lu, T. B. Metal-organic layers as a platform for developing single-atom catalysts for photochemical CO2 reduction. Nano Energy 2021, 80, 105542.

    Article  CAS  Google Scholar 

  55. Chen, Y. J.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: Protein encapsulation, protection, and release. J. Am. Chem. Soc. 2018, 140, 5678–5681.

    Article  CAS  Google Scholar 

  56. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.

    Article  CAS  Google Scholar 

  57. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365.

    Article  Google Scholar 

  58. Hanikel, N.; Prévot, M. S.; Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355.

    Article  CAS  Google Scholar 

  59. Teo, W. L.; Liu, J. W.; Zhou, W. Q.; Zhao, Y. L. Facile preparation of antibacterial MOF-fabric systems for functional protective wearables. SmartMat, in press, DOI: https://doi.org/10.1002/smm2.1046.

  60. He, J.; Xu, J. L.; Yin, J. C.; Li, N.; Bu, X. H. Recent advances in luminescent metal-organic frameworks for chemical sensors. Sci. China Mater. 2019, 62, 1655–1678.

    Article  CAS  Google Scholar 

  61. Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488.

    Article  CAS  Google Scholar 

  62. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  63. Qin, Y. T.; Guo, J.; Zhao, M. T. Metal-organic framework-based solid acid materials for biomass upgrade. Trans. Tianjin Uni v. 2021, 27, 434–449.

    Article  CAS  Google Scholar 

  64. Ren, X. H.; Liao, G. C.; Li, Z. J.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X. et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781.

    Article  CAS  Google Scholar 

  65. Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

    Article  Google Scholar 

  66. Burtch, N. C.; Heinen, J.; Bennett, T. D.; Dubbeldam, D.; Allendorf, M. D. Mechanical properties in metal-organic frameworks: Emerging opportunities and challenges for device functionality and technological applications. Adv. Mater. 2018, 30, 1704124.

    Article  Google Scholar 

  67. Song, Y. P.; Sun, Q.; Aguila, B.; Ma, S. Q. Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410.

    Article  Google Scholar 

  68. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

    Article  CAS  Google Scholar 

  69. Zhong, X.; Liu, Y. X.; Liang, W.; Zhu, Y. L.; Hu, B. W. Construction of core-shell MOFs@COF hybrids as a platform for the removal of UO22+ and Eu3+ ions from solution. ACS Appl. Mater. Interfaces 2021, 13, 13883–13895.

    Article  CAS  Google Scholar 

  70. Firoozi, M.; Rafiee, Z.; Dashtian, K. New MOF/COF hybrid as a robust adsorbent for simultaneous removal of auramine O and rhodamine B dyes. ACS Omega 2020, 5, 9420–9428.

    Article  CAS  Google Scholar 

  71. Fu, J. R.; Das, S.; Xing, G. L.; Ben, T.; Valtchev, V.; Qiu, S. L. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J. Am. Chem. So c. 2016, 138, 7673–7680.

    Article  CAS  Google Scholar 

  72. Li, W. T.; Shi, W.; Hu, Z. J.; Yang, T.; Chen, M. L.; Zhao, B.; Wang, J. H. Fabrication of magnetic Fe3O4@metal organic framework@covalent organic framework composite and its selective separation of trace copper. Appl. Surf. Sc i. 2020, 530, 147254.

    Article  CAS  Google Scholar 

  73. Das, S.; Ben, T.; Qiu, S. L.; Valtchev, V. Two-dimensional COF-three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities. ACS Appl. Mater. Int erfaces 2020, 12, 52899–52907.

    Article  CAS  Google Scholar 

  74. Rafiee, Z. Fabrication of efficient Zn-MOF/COF catalyst for the knoevenagel condensation reaction. J. Iran. Chem. Soc. 2021, 18, 2657–2664.

    Article  CAS  Google Scholar 

  75. Rahmati, E.; Rafiee, Z. Synthesis of Co-MOF/COF nanocomposite: Application as a powerful and recoverable catalyst in the knoevenagel reaction. J. Porous Mater. 2021, 28, 19–27.

    Article  CAS  Google Scholar 

  76. Xue, K. H.; He, R.; Yang, T. L.; Wang, J.; Sun, R. R.; Wang, L.; Yu, X. L.; Omeoga, U.; Pi, S. F.; Yang, T. et al. MOF-based In2S3-X2S3 (X = Bi; Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic performance under visible light. Appl. Surf. Sc i. 2019, 493, 41–54.

    Article  CAS  Google Scholar 

  77. Lv, S. W.; Liu, J. M.; Li, C. Y.; Zhao, N.; Wang, Z. H.; Wang, S. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A. Chemosphere 2020, 243, 125378.

    Article  CAS  Google Scholar 

  78. Zhang, S. H.; Xia, W.; Yang, Q.; Valentino Kaneti, Y.; Xu, X. T.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A.; Na, J.; Tang, J. et al. Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates. Chem. Eng. J. 2020, 396, 125154.

    Article  CAS  Google Scholar 

  79. Cui, K. X.; Zhong, W. F.; Li, L. Y.; Zhuang, Z. Y.; Li, L. Y.; Bi, J. H.; Yu, Y. Well-defined metal nanoparticles@covalent organic framework yolk-shell nanocages by ZIF-8 template as catalytic nanoreactors. Small 2019, 15, 1804419.

    Google Scholar 

  80. Li, M. M.; Qiao, S.; Zheng, Y. L.; Andaloussi, Y. H.; Li, X.; Zhang, Z. J.; Li, A.; Cheng, P.; Ma, S. Q.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. So c. 2020, 142, 6675–6681.

    Article  CAS  Google Scholar 

  81. Zhang, S. H.; Yang, Q.; Xu, X. T.; Liu, X. H.; Li, Q.; Guo, J. R.; Torad, N. L.; Alshehri, S. M.; Ahamad, T.; Hossain, S. A. et al. Assembling well-arranged covalent organic frameworks on MOF-derived graphitic carbon for remarkable formaldehyde sensing. Nanoscale 2020, 12, 15611–15619.

    Article  CAS  Google Scholar 

  82. Zhuang, G. L.; Gao, Y. F.; Zhou, X.; Tao, X. Y.; Luo, J. M.; Gao, Y. J.; Yan, Y. L.; Gao, P. Y.; Zhong, X.; Wang, J. G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255–1264.

    Article  CAS  Google Scholar 

  83. Zhang, H. W.; Zhu, Q. Q.; Yuan, R. R.; He, H. M. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B:Che m. 2021, 329, 129144.

    Article  CAS  Google Scholar 

  84. Liu, X. H.; Zhang, S. H.; Feng, G. L.; Wu, Z. G.; Wang, D.; Albaqami, M. D.; Zhong, B. H.; Chen, Y. X.; Guo, X. D.; Xu, X. T. et al. Core-shell MOF@COF motif hybridization: Selectively functionalized precursors for titanium dioxide nanoparticle-embedded nitrogen-rich carbon architectures with superior capacitive deionization performance. Chem. Mate r. 2021, 33, 1657–1666.

    Article  CAS  Google Scholar 

  85. Wang, X. Y.; Yin, H. Q.; Yin, X. B. MOF@COFs with strong multiemission for differentiation and ratiometric fluorescence detection. ACS Appl. Mater. Interfaces 2020, 12, 20973–20981.

    Article  CAS  Google Scholar 

  86. Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. A titanium-organic framework: Engineering of the band-gap energy for photocatalytic property enhancement. ACS Catal. 2017, 7, 338–342.

    Article  CAS  Google Scholar 

  87. Song, J.; Luo, Z.; Britt, D. K.; Furukawa, H.; Yaghi, O. M.; Hardcastle, K. I.; Hill, C. L. A multiunit catalyst with synergistic stability and reactivity: A polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc. 2011, 133, 16839–16846.

    Article  CAS  Google Scholar 

  88. Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632.

    Article  CAS  Google Scholar 

  89. Zhang, Z.; Liu, Y. W.; Tian, H. R.; Li, X. H.; Liu, S. M.; Lu, Y.; Sun, Z. X.; Liu, T. B.; Liu, S. X. Polyoxometalate-based metal-organic framework fractal crystals. Matter 2020, 2, 250–260.

    Article  Google Scholar 

  90. Ma, R.; Liu, N. F.; Lin, T. T.; Zhao, T. B.; Huang, S. L.; Yang, G. Y. Anderson polyoxometalate built-in covalent organic frameworks for enhancing catalytic performances. J. Mater. Chem. A 2020, 8, 8548–8553.

    Article  CAS  Google Scholar 

  91. Yu, X. Q.; Li, C. Y.; Ma, Y. C.; Li, D. H.; Li, H.; Guan, X. Y.; Yan, Y. S.; Valtchev, V.; Qiu, S. L.; Fang, Q. R. Crystalline, porous, covalent polyoxometalate-organic frameworks for lithiumion batteries. Micropor. Mesopor. Mater. 2020, 299, 110105.

    Article  CAS  Google Scholar 

  92. Zhao, Y.; Wang, Z. F.; Gao, J.; Zhao, Z. F.; Li, X.; Wang, T.; Cheng, P.; Ma, S. Q.; Chen, Y.; Zhang, Z. J. COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale 2020, 12, 21218–21224.

    Article  CAS  Google Scholar 

  93. Li, X. M.; Wang, J. Y.; Xue, F. F.; Wu, Y. C.; Xu, H. L.; Yi, T.; Li, Q. W. An imine-linked metal-organic framework as a reactive oxygen species generator. Angew. Chem., Int. Ed. 2021, 60, 2534–2540.

    Article  CAS  Google Scholar 

  94. Jangir, R.; Kalita, A. C.; Kaleeswaran, D.; Gupta, S. K.; Murugavel, R. A [4+2] condensation strategy to imine-linked single-crystalline zeolite-like zinc phosphate frameworks. Chem. -Eur. J. 2018, 24, 6178–6190.

    Article  CAS  Google Scholar 

  95. Bai, Y.; Dou, Y. B.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327–2367.

    Article  CAS  Google Scholar 

  96. Yuan, S.; Zou, L. F.; Qin, J. S.; Li, J. L.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T. et al. Construction of hierarchically porous metal-organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356.

    Article  CAS  Google Scholar 

  97. Lyu, J. F.; Zhang, X.; Chen, Z. J.; Anderson, R.; Wang, X. J.; Wasson, M. C.; Bai, P.; Guo, X. H.; Islamoglu, T.; Gómez-Gualdrón, D. A. et al. Modular synthesis of highly porous Zr-MOFs assembled from simple building blocks for oxygen storage. ACS Appl. Mater. Interfaces 2019, 11, 42179–42185.

    Article  CAS  Google Scholar 

  98. Arrozi, U. S. F.; Bon, V.; Krause, S.; Lübken, T.; Weiss, M. S.; Senkovska, I.; Kaskel, S. In situ imine-based linker formation for the synthesis of zirconium MOFs: A route to CO2 capture materials and ethylene oligomerization catalysts. Inorg. Chem. 2020, 59, 350–359.

    Article  CAS  Google Scholar 

  99. Nguyen, K. D.; Ehrling, S.; Senkovska, I.; Bon, V.; Kaskel, S. New 1D chiral Zr-MOFs based on in situ imine linker formation as catalysts for asymmetric C-C coupling reactions. J. Catal. 2020, 3 86, 106–116.

    Article  CAS  Google Scholar 

  100. Yuan, S.; Qin, J. S.; Su, J.; Li, B.; Li, J. L.; Chen, W. M.; Drake, H. F.; Zhang, P.; Yuan, D. Q.; Zuo, J. L. et al. Sequential transformation of zirconium(IV)-MOFs into heterobimetallic MOFs bearing magnetic anisotropic cobalt(II) centers. Angew. Chem., Int. Ed. 2018, 57, 12578–12583.

    Article  CAS  Google Scholar 

  101. Yuan, S.; Zhang, P.; Zhang, L. L.; Garcia-Esparza, A. T.; Sokaras, D.; Qin, J. S.; Feng, L.; Day, G. S.; Chen, W. M.; Drake, H. F. et al. Exposed equatorial positions of metal centers via sequential ligand elimination and installation in MOFs. J. Am. Chem. Soc. 2018, 140, 10814–10819.

    Article  CAS  Google Scholar 

  102. Feng, L.; Yuan, S.; Qin, J. S.; Wang, Y.; Kirchon, A.; Qiu, D.; Cheng, L.; Madrahimov, S. T.; Zhou, H. C. Lattice expansion and contraction in metal-organic frameworks by sequential linker reinstallation. Matter 2019, 1, 156–167.

    Article  Google Scholar 

  103. Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Côté, A. P.; Kim, J.; Yaghi, O. M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 2005, 127, 7110–7118.

    Article  CAS  Google Scholar 

  104. Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 2007, 129, 12914–12915.

    Article  Google Scholar 

  105. El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

    Article  CAS  Google Scholar 

  106. Kong, X. J.; He, T.; Zhang, Y. Z.; Wu, X. Q.; Wang, S. N.; Xu, M. M.; Si, G. R.; Li, J. R. Constructing new metal-organic frameworks with complicated ligands from “one-pot” in situ reactions. Chem. Sci. 2019, 10, 3949–3955.

    Article  CAS  Google Scholar 

  107. Dietrich-Buchecker, C.; Sauvage, J. P. Templated synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system. T etrahedron 1990, 46, 503–512.

    CAS  Google Scholar 

  108. Campbell, V. E.; de Hatten, X.; Delsuc, N.; Kauffmann, B.; Huc, I.; Nitschke, J. R. Cascading transformations within a dynamic self-assembled system. Nat. Chem. 2010, 2, 684–687.

    Article  CAS  Google Scholar 

  109. Zhao, Y. B.; Guo, L.; Gándara, F.; Ma, Y. H.; Liu, Z.; Zhu, C. H.; Lyu, H.; Trickett, C. A.; Kapustin, E. A.; Terasaki, O. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 13166–13172.

    Article  CAS  Google Scholar 

  110. Liu, Y. Z.; Ma, Y. H.; Yang, J. J.; Diercks, C. S.; Tamura, N.; Jin, F. Y.; Yaghi, O. M. Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J. Am. Chem. Soc. 2018, 140, 16015–16019.

    Article  CAS  Google Scholar 

  111. Liu, Y. Z.; Diercks, C. S.; Ma, Y. H.; Lyu, H.; Zhu, C. H.; Alshmimri, S. A.; Alshihri, S.; Yaghi, O. M. 3D covalent organic frameworks of interlocking 1D square ribbons. J. Am. Chem. Soc. 2019, 141, 677–683.

    Article  CAS  Google Scholar 

  112. Xu, H. S.; Luo, Y.; See, P. Z.; Li, X.; Chen, Z. X.; Zhou, Y.; Zhao, X. X.; Leng, K.; Park, I. H.; Li, R. L. et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks (COFs). A ngew. Chem., Int. Ed. 2020, 59, 11527–11532.

    Article  CAS  Google Scholar 

  113. Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

    Article  Google Scholar 

  114. Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal-organic frameworks. SmartMat, in press, DOI: https://doi.org/10.1002/smm2.1047.

  115. Wang, B. Q.; Liu, W. X.; Zhang, W. N.; Liu, J. F. Nanoparticles@nanoscale metal-organic framework composites as highly efficient heterogeneous catalysts for size- and shape-selective reactions. Nano Res. 2017, 10, 3826–3835.

    Article  CAS  Google Scholar 

  116. Pan, T.; Khalil, I. E.; Xu, Z. L.; Li, H. F.; Zhang, X. L.; Xiao, G. W.; Zhang, W. N.; Shen, Y.; Huo, F. W. Spatial compartmentalization of metal nanoparticles within metal-organic frameworks for tandem reaction. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3621-7.

  117. Kitao, T.; Zhang, Y. Y.; Kitagawa, S.; Wang, B.; Uemura, T. Hybridization of MOFs and polymers. Chem. Soc. Rev. 2017, 46, 3108–3133.

    Article  CAS  Google Scholar 

  118. Kalaj, M.; Bentz, K. C.; Ayala, S. Jr.; Palomba, J. M.; Barcus, K. S.; Katayama, Y.; Cohen, S. M. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Rev. 2020, 120, 8267–8302.

    Article  CAS  Google Scholar 

  119. Li, T.; Sullivan, J. E.; Rosi, N. L. Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc. 2013, 135, 9984–9987.

    Article  CAS  Google Scholar 

  120. Haldar, R.; Wöll, C. Hierarchical assemblies of molecular frameworks-MOF-on-MOF epitaxial heterostructures. Nano Res. 2021, 14, 355–368.

    Article  CAS  Google Scholar 

  121. Tan, J.; Namuangruk, S.; Kong, W. F.; Kungwan, N.; Guo, J.; Wang, C. C. Manipulation of amorphous-to-crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem., Int. Ed. 2016, 55, 13979–13984.

    Article  CAS  Google Scholar 

  122. Shi, X. F.; Yao, Y. J.; Xu, Y. L.; Liu, K.; Zhu, G. S.; Chi, L. F.; Lu, G. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl. Ma ter. Interfaces 2017, 9, 7481–7488.

    Article  CAS  Google Scholar 

  123. Li, Y.; Yang, C. X.; Yan, X. P. Controllable preparation of core-shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem. Commun. 2017, 53, 2511–2514.

    Article  CAS  Google Scholar 

  124. Cai, L. H.; Hu, C. L.; Liu, S. N.; Zhou, Y.; Pang, M. L.; Lin, J. A covalent organic framework-based multifunctional therapeutic platform for enhanced photodynamic therapy via catalytic cascade reactions. Sci. China Mater. 2021, 64, 488–497.

    Article  CAS  Google Scholar 

  125. Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for highperformance hydrogen evolution. Nano Res. 2020, 13, 983–988.

    Article  CAS  Google Scholar 

  126. Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for highperformance lithium-sulfur batteries. Nano Re s. 2021, 14, 3576–3584.

    Article  CAS  Google Scholar 

  127. Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon-Masseron, A.; Patarin, J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Micropor. Mesopor. Mater. 2012, 157, 75–81.

    Article  CAS  Google Scholar 

  128. Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

    Article  CAS  Google Scholar 

  129. Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

    Article  CAS  Google Scholar 

  130. Peng, H. J.; Raya, J.; Richard, F.; Baaziz, W.; Ersen, O.; Ciesielski, A.; Samori, P. Synthesis of robust MOFs@COFs porous hybrid materials via an aza-Diels-Alder reaction: Towards highperformance supercapacitor materials. Angew. Chem., Int. Ed. 2020, 59, 19602–19609.

    Article  CAS  Google Scholar 

  131. Dibble, D. J.; Umerani, M. J.; Mazaheripour, A.; Park, Y. S.; Ziller, J. W.; Gorodetsky, A. A. An aza-diels-aalder route to polyquinolines. Macromolecules 2015, 48, 557–561.

    Article  CAS  Google Scholar 

  132. Li, X. L.; Zhang, C. L.; Cai, S. L.; Lei, X. H.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9, 2998.

    Article  Google Scholar 

  133. Sun, D. R.; Jang, S.; Yim, S. J.; Ye, L.; Kim, D. P. Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv. Funct. Mater. 2018, 28, 1707110.

    Article  Google Scholar 

  134. Cai, M. K.; Li, Y. L.; Liu, Q. L.; Xue, Z. Q.; Wang, H. P.; Fan, Y. N.; Zhu, K. L.; Ke, Z. F.; Su, C. Y.; Li, G. Q. One-step construction of hydrophobic MOFs@COFs core-shell composites for heterogeneous selective catalysis. Adv. Sci. 2019, 6, 1802365.

    Article  Google Scholar 

  135. Gao, M. L.; Qi, M. H.; Liu, L.; Han, Z. B. An exceptionally stable core-shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization-Knoevenagel condensation reaction. Chem. Commun. 2019, 55, 6377–6380.

    Article  CAS  Google Scholar 

  136. Cheng, Y. D.; Ying, Y. P.; Zhai, L. Z.; Liu, G. L.; Dong, J. Q.; Wang, Y. X.; Christopher, M. P.; Long, S. C.; Wang, Y. X.; Zhao, D. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation. J. Membr. S ci. 2019, 573, 97–106.

    Article  CAS  Google Scholar 

  137. Garzón-Tovar, L.; Pérez-Carvajal, J.; Yazdi, A.; Hernández-Muñoz, J.; Tarazona, P.; Imaz, I.; Zamora, F.; Maspoch, D. A MOF@COF composite with enhanced uptake through interfacial pore generation. Angew. Chem., Int. Ed. 2019, 58, 9512–9516.

    Article  Google Scholar 

  138. Sun, D. R.; Kim, D. P. Hydrophobic MOFs@metal nanoparticles@COFs for interfacially confined photocatalysis with high efficiency. ACS Appl. Mater. Inte rfaces 2020, 12, 20589–20595.

    Article  CAS  Google Scholar 

  139. Liu, X. K.; Hu, M. Y.; Wang, M. H.; Song, Y. P.; Zhou, N.; He, L. H.; Zhang, Z. H. Novel nanoarchitecture of Co-MOF-on-TPN-COF hybrid: Ultralowly sensitive bioplatform of electrochemical aptasensor toward ampicillin. Biosens. Bioelectron. 2019, 123, 59–68.

    Article  CAS  Google Scholar 

  140. Zhou, N.; Ma, Y. S.; Hu, B.; He, L. H.; Wang, S. J.; Zhang, Z. H.; Lu, S. Y. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens. Bioelectron. 2019, 127, 92–100.

    Article  CAS  Google Scholar 

  141. Dang, Q.; Huang, H. L.; Li, L. Y.; Lyu, X. L.; Zhong, S. H.; Yu, Y.; Xu, D. S. Yolk-shell-structured covalent organic frameworks with encapsulated metal-organic frameworks for synergistic catalysis. Chem. Mater. 2021, 33, 5690–5699.

    Article  CAS  Google Scholar 

  142. Fan, H. W.; Peng, M. H.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 2021, 12, 38.

    Article  CAS  Google Scholar 

  143. Sun, W. W.; Tang, X. X.; Yang, Q. S.; Xu, Y.; Wu, F.; Guo, S. Y.; Zhang, Y. F.; Wu, M. H.; Wang, Y. Coordination-induced interlinked covalent- and metal-organic-framework hybrids for enhanced lithium storage. Adv. Mater. 2019, 31, 1903176.

    Article  Google Scholar 

  144. Li, F.; Wang, D. K.; Xing, Q. J.; Zhou, G.; Liu, S. S.; Li, Y.; Zheng, L. L.; Ye, P.; Zou, J. P. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance. Appl. Catal. B Environ. 2019, 243, 621–628.

    Article  CAS  Google Scholar 

  145. DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642–5650.

    Article  CAS  Google Scholar 

  146. Burtch, N.; Jasuja, H.; Walton, K. Water stability and adsorption in metal-organic frameworks. Chem. Rev. 2014, 114, 10575–10612.

    Article  CAS  Google Scholar 

  147. Xu, S. S.; Guo, X. Y.; Qiao, Z. H.; Huang, H. L.; Zhong, C. L. Methyl-shield Cu-BTC with high water stability through one-step synthesis and in situ functionalization. Ind. Eng. Chem. Res. 2020, 59, 12451–12457.

    Article  CAS  Google Scholar 

  148. Madden, D. G.; Albadarin, A. B.; O’Nolan, D.; Cronin, P.; Perry IV, J. J.; Solomon, S.; Curtin, T.; Khraisheh, M.; Zaworotko, M. J.; Walker, G. M. Metal-organic material polymer coatings for enhanced gas sorption performance and hydrolytic stability under humid conditions. ACS Appl. Mater. Interf aces 2020, 12, 33759–33764.

    Article  CAS  Google Scholar 

  149. Yang, S. L.; Peng, L.; Syzgantseva, O. A.; Trukhina, O.; Kochetygov, I.; Justin, A.; Sun, D. T.; Abedini, H.; Syzgantseva, M. A.; Oveisi, E. et al. Preparation of highly porous metal-organic framework beads for metal extraction from liquid streams. J. Am. Chem. Soc. 2020, 142, 13415–13425.

    Article  CAS  Google Scholar 

  150. Zhang, W.; Hu, Y. L.; Ge, J.; Jiang, H. L.; Yu, S. H. A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity. J. Am. Chem. So c. 2014, 136, 16978–16981.

    Article  CAS  Google Scholar 

  151. DeCoste, J. B.; Weston, M. H.; Fuller, P. E.; Tovar, T. M.; Peterson, G. W.; LeVan, M. D.; Farha, O. K. Metal-organic frameworks for oxygen storage. Angew. Chem., Int. Ed. 2014, 53, 14092–14095.

    Article  CAS  Google Scholar 

  152. Yue, B.; Liu, J. H.; Li, G. L.; Wu, Y. N. Synthesis of magnetic metal organic framework/covalent organic framework hybrid materials as adsorbents for magnetic solid-phase extraction of four endocrine-disrupting chemicals from milk samples. Rapid Commun. Mass Spectrom. 2020, 34, e8909.

    Article  CAS  Google Scholar 

  153. Liu, J. C.; Li, G. L.; Wu, D.; Yu, Y. X.; Chen, J.; Wu, Y. N. Facile preparation of magnetic covalent organic framework-metal organic framework composite materials as effective adsorbents for the extraction and determination of sedatives by high-performance liquid chromatography/tandem mass spectrometry in meat samples. Rapid Commun. Mass Spectrom. 2020, 34, e8742.

    Article  CAS  Google Scholar 

  154. Chen, Z. P.; Yu, C.; Xi, J. B.; Tang, S.; Bao, T.; Zhang, J. A hybrid material prepared by controlled growth of a covalent organic framework on amino-modified MIL-68 for pipette tip solid-phase extraction of sulfonamides prior to their determination by HPLC. M icrochim. Acta 2019, 186, 393.

    Google Scholar 

  155. Zhai, Q. G.; Bu, X. H.; Mao, C. Y.; Zhao, X.; Daemen, L.; Cheng, Y. Q.; Ramirez-Cuesta, A. J.; Feng, P. Y. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 2016, 7, 13645.

    Article  CAS  Google Scholar 

  156. Zhai, Q. G.; Bu, X. H.; Zhao, X.; Li, D. S.; Feng, P. Y. Pore space partition in metal-organic frameworks. Acc. Chem. Res. 2017, 50, 407–417.

    Article  CAS  Google Scholar 

  157. Godfrey, H. G. W.; da Silva, I.; Briggs, L.; Carter, J. H.; Morris, C. G.; Savage, M.; Easun, T. L.; Manuel, P.; Murray, C. A.; Tang, C. C. et al. Ammonia storage by reversible host-guest site exchange in a robust metal-organic framework. Angew. Chem., Int. E d. 2018, 57, 14778–14781.

    Article  CAS  Google Scholar 

  158. Rieth, A. J.; Dincă, M. Controlled gas uptake in metal-organic frameworks with record ammonia sorption. J. Am. Chem. S oc. 2018, 140, 3461–3466.

    Article  CAS  Google Scholar 

  159. Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. 2014, 50, 13825–13828.

    Article  CAS  Google Scholar 

  160. Das, S.; Ben, T. A [COF-300]-[UiO-66] composite membrane with remarkably high permeability and H2/CO2 separation selectivity. Dalton Trans. 2018, 47, 7206–7212.

    Article  CAS  Google Scholar 

  161. Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angew. Chem., Int. Ed. 2010, 49, 548–551.

    Article  CAS  Google Scholar 

  162. Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

    Article  CAS  Google Scholar 

  163. Haug, W. K.; Moscarello, E. M.; Wolfson, E. R.; McGrier, P. L. The luminescent and photophysical properties of covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 839–864.

    Article  CAS  Google Scholar 

  164. Dong, J. Q.; Han, X.; Liu, Y.; Li, H. Y.; Cui, Y. Metal-covalent organic frameworks (MCOFs): A bridge between metal-organic frameworks and covalent organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 13722–13733.

    Article  CAS  Google Scholar 

  165. Zhi, Y. F.; Wang, Z. R.; Zhang, H. L.; Zhang, Q. C. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 2020, 16, 2001070.

    Article  CAS  Google Scholar 

  166. Zhang, T.; Lin, W. B. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Re v. 2014, 43, 5982–5993.

    Article  CAS  Google Scholar 

  167. Qiu, X. Y.; Zhang, Y.; Zhu, Y. F.; Long, C.; Su, L. N.; Liu, S. Q.; Tang, Z. Y. Applications of nanomaterials in asymmetric photocatalysis: Recent progress, challenges, and opportunities. Adv. Mater. 2021, 33, 2001731.

    Article  CAS  Google Scholar 

  168. Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

    Article  CAS  Google Scholar 

  169. Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

    Article  CAS  Google Scholar 

  170. Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

    Article  CAS  Google Scholar 

  171. Hu, H. H.; Wang, Z. Y.; Cao, L. Y.; Zeng, L. Z.; Zhang, C. K.; Lin, W. B.; Wang, C. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 2021, 13, 358–366.

    Article  CAS  Google Scholar 

  172. Gong, Y. N.; Mei, J. H.; Liu, J. W.; Huang, H. H.; Zhang, J. H.; Li, X. K.; Zhong, D. C.; Lu, T. B. Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Appl. Catal. B:Environ. 2021, 292, 120156.

    Article  CAS  Google Scholar 

  173. Zheng, M. X.; Yao, C.; Xu, Y. H. Fe3O4 nanoparticles decorated with UiO-66 metal-organic framework particles and encapsulated in a triazine-based covalent organic framework matrix for photodegradation of anionic dyes. ACS Appl. Nano Mater. 2020, 3, 11307–11314.

    Article  CAS  Google Scholar 

  174. He, S. J.; Rong, Q. F.; Niu, H. Y.; Cai, Y. Q. Platform for molecular-material dual regulation: A direct Z-scheme MOF/COF heterojunction with enhanced visible-light photocatalytic activity. A ppl. Catal. B:Environ. 2019, 247, 49–56.

    Article  CAS  Google Scholar 

  175. Zhao, J.; Jin, B.; Peng, R. F. New core-shell hybrid material Ir-MOF3@COF-LZU1 for highly efficient visible-light photocatalyst degrading nitroaromatic explosives. Langmuir 2020, 36, 5665–5670.

    Article  CAS  Google Scholar 

  176. Li, L. P.; Sun, X. F.; Qiu, X. Q.; Xu, J. X.; Li, G. S. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate. Inorg. Chem. 2008, 47, 8839–8846.

    Article  CAS  Google Scholar 

  177. Zhu, C. S.; Zhang, L.; Jiang, B.; Zheng, J. T.; Hu, P.; Li, S. J.; Wu, M. B.; Wu, W. T. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl. Surf. Sci. 2016, 377, 99–108.

    Article  CAS  Google Scholar 

  178. Song, Y.; Li, Z.; Zhu, Y. Y.; Feng, X. Y.; Chen, J. S.; Kaufmann, M.; Wang, C.; Lin, W. B. Titanium hydroxide secondary building units in metal-organic frameworks catalyze hydrogen evolution under visible light. J. Am. Chem. Soc. 2019, 141, 12219–12223.

    Article  CAS  Google Scholar 

  179. Zuo, Q.; Liu, T. T.; Chen, C. S.; Ji, Y.; Gong, X. Q.; Mai, Y. Y.; Zhou, Y. F. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem., Int. Ed. 2019, 5 8, 10198–10203.

    Article  CAS  Google Scholar 

  180. Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590.

    Article  CAS  Google Scholar 

  181. Chen, Y.; Yang, D.; Shi, B. B.; Dai, W.; Ren, H. J.; An, K.; Zhou, Z. Y.; Zhao, Z. F.; Wang, W. J.; Jiang, Z. Y. In situ construction of hydrazone-linked COF-based core-shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 2020, 8, 7724–7732.

    Article  CAS  Google Scholar 

  182. Ghosh, S.; Li, X. Q.; Stepanenko, V.; Würthner, F. Control of Hand J-type π stacking by peripheral alkyl chains and self-sorting phenomena in perylene bisimide homo- and heteroaggregates. Chem. -Eur. J. 2008, 14, 11343–11357.

    Article  CAS  Google Scholar 

  183. Wang, J.; Liu, D.; Zhu, Y. F.; Zhou, S. Y.; Guan, S. Y. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl. Catal. B:Environ. 2018, 231, 251–261.

    Article  CAS  Google Scholar 

  184. Yuan, K.; Song, T. Q.; Wang, D. W.; Zhang, X. T.; Gao, X.; Zou, Y.; Dong, H. L.; Tang, Z. Y.; Hu, W. P. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal-organic frameworks, metal nanoparticles, and micro- and mesoporous polymers. Angew. Chem., Int. Ed. 2018, 57, 5708–5713.

    Article  CAS  Google Scholar 

  185. Xia, W.; Li, J. J.; Wang, T.; Song, L.; Guo, H.; Gong, H.; Jiang, C.; Gao, B.; He, J. P. The synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from a 2D MOF and their enhanced performance in the oxygen reduction reaction. Chem. Commun. 2018, 54, 1623–1626.

    Article  CAS  Google Scholar 

  186. Polat, V.; Bozcali, E.; Uygun, T.; Opan, S.; Karakaya, O. Diagnostic significance of serum galectin-3 levels in heart failure with preserved ejection fraction. Acta Cardiol. 2016, 71, 191–197.

    Article  Google Scholar 

  187. Yola, M. L.; Atar, N. Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core-shell Ti-MOF@COFs composites. Nanoscale 2020, 12, 19824–19832.

    Article  CAS  Google Scholar 

  188. Chen, Z. P.; He, Z. L.; Luo, X. G.; Wu, F. S.; Tang, S.; Zhang, J. Synthesis of MOF@COF hybrid magnetic adsorbent for microextraction of sulfonamides in food and environmental samples. Food Anal. Methods 2020, 13, 1346–1356.

    Article  Google Scholar 

  189. Zheng, R. J.; Yang, Y. C.; Yang, C.; Xia, Y. Core-shell MOF@COFs used as an adsorbent and matrix for the detection of nonsteroidal anti-inflammatory drugs by MALDI-TOF MS. Microchim. Acta 2021, 188, 179.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21905195 and 22103055), the Natural Science Foundation of Tianjin City (No. 20JCYBJC00800) and PEIYANG Young Scholars Program of Tianjin University (No. 2020XRX-0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Guo or Meiting Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, J., Wan, Y. et al. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Res. 15, 3514–3532 (2022). https://doi.org/10.1007/s12274-021-3980-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3980-0

Keywords

Navigation