Skip to main content
Log in

Efficient energy transfer in organic light-emitting transistor with tunable wavelength

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Key challenges in the development of organic light-emitting transistors (OLETs) are blocking both scientific research and practical applications of these devices, e.g., the absence of high-mobility emissive organic semiconductor materials, low device efficiency, and color tunability. Here, we report a novel device configuration called the energy transfer organic light-emitting transistor (ET-OLET) that is intended to overcome these challenges. An organic fluorescent dye-doped polymethyl methacrylate (PMMA) layer is inserted below the conventional high-mobility organic semiconductor layer in a single-component OLET to separate the functions of the charge transport and light-emitting layers, thus making the challenge to essentially integrate the high mobility and emissive functions within a single organic semiconductor in a conventional OLET or multilayer OLET unnecessary. In this architecture, there is little change in mobility, but the external quantum efficiency (EQE) of the ET-OLET is more than six times that of the conventional OLET because of the efficient Förster resonance energy transfer, which avoids exciton-charge annihilation. In addition, the emission color can be tuned from blue to white to green-yellow using the source-drain and gate voltages. The proposed structure is promising for use with electrically pumped organic lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou, L. L.; Zhang, X. Y.; Cotella, G. F.; Carnicella, G.; Herder, M.; Schmidt, B. M.; Pätzel, M.; Hecht, S.; Cacialli, F.; Samori, P. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 2019, 14, 347–353.

    Article  CAS  Google Scholar 

  2. Qin, Z. S.; Gao, H. K.; Dong, H. L.; Hu, W. P. Organic light-emitting transistors entering a new development stage. Adv. Mater. 2021, 33, 2007149.

    Article  CAS  Google Scholar 

  3. Chaudhry, M. U.; Muhieddine, K.; Wawrzinek, R.; Sobus, J.; Tandy, K.; Lo, S. C.; Namdas, E. B. Organic light-emitting transistors: Advances and perspectives. Adv. Funct. Mater. 2019, 30, 1905282.

    Article  Google Scholar 

  4. Li, M. Y.; Chen, C. H.; Shi, Y. M.; Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335.

    Article  Google Scholar 

  5. Zaumseil, J.; Friend, R. H.; Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 2005, 5, 69–74.

    Article  Google Scholar 

  6. Zhang, C. C.; Chen, P. L.; Hu, W. P. Organic light-emitting transistors: Materials, device configurations, and operations. Small 2016, 12, 1252–1294.

    Article  CAS  Google Scholar 

  7. Zaumseil, J.; Donley, C. L.; Kim, J. S.; Friend, R. H.; Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 2006, 18, 2708–2712.

    Article  CAS  Google Scholar 

  8. Nakanotani, H.; Saito, M.; Nakamura, H.; Adachi, C. Highly balanced ambipolar mobilities with intense electroluminescence in field-effect transistors based on organic single crystal oligo(p-phenylenevinylene) derivatives. Appl. Phys. Lett. 2009, 95, 033308.

    Article  Google Scholar 

  9. Liu, C. F.; Liu, X.; Lai, W. Y.; Huang, W. Organic light-emitting field-effect transistors: Device geometries and fabrication techniques. Adv. Mater. 2018, 30, 1802466.

    Article  Google Scholar 

  10. Bisri, S. Z.; Takenobu, T.; Yomogida, Y.; Shimotani, H.; Yamao, T.; Hotta, S.; Iwasa, Y. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 2009, 19, 1728–1735.

    Article  CAS  Google Scholar 

  11. Gwinner, M. C.; Kabra, D.; Roberts, M.; Brenner, T. J. K.; Wallikewitz, B. H.; McNeill, C. R.; Friend, R. H.; Sirringhaus, H. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 2012, 24, 2728–2734.

    Article  CAS  Google Scholar 

  12. Liu, J.; Zhang, H. T.; Dong, H. L.; Meng, L. Q.; Jiang, L. F.; Jiang, L.; Wang, Y.; Yu, J. S.; Sun, Y. M.; Hu, W. P. et al. High mobility emissive organic semiconductor. Nat. Commun. 2015, 6, 10032.

    Article  CAS  Google Scholar 

  13. Wang, Y. S.; Yang, J.; Gong, Y. X.; Fang, M. M.; Li, Z.; Tang, B. Z. Host-guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat 2020, 1, e1006.

    Google Scholar 

  14. Guo, X. F.; Zhang, Y. H.; Hu, Y. X.; Yang, J. X.; Li, Y.; Ni, Z. J.; Dong, H. L.; Hu, W. P. Molecular weight engineering in highperformance ambipolar emissive mesopolymers. Angew. Chem., Int. Ed. 2021, 60, 14902–14908.

    Article  CAS  Google Scholar 

  15. Liu, D.; De, J. B.; Gao, H. K.; Ma, S. Q.; Ou, Q.; Li, S.; Qin, Z. S.; Dong, H. L.; Liao, Q.; Xu, B. et al. Organic laser molecule with high mobility, high photoluminescence quantum yield, and deep-blue lasing characteristics. J. Am. Chem. Soc. 2020, 142, 6332–6339.

    Article  CAS  Google Scholar 

  16. Xie, Z. Y.; Liu, D.; Zhang, Y. H.; Liu, Q. Q.; Dong, H. L.; Hu, W. P. Recent advances on high mobility emissive anthracene-derived organic semiconductors. Chem. J. Chin. Univ. 2020, 41, 1179–1193.

    CAS  Google Scholar 

  17. Dadvand, A.; Moiseev, A. G.; Sawabe, K.; Sun, W. H.; Djukic, B.; Chung, I.; Takenobu, T.; Rosei, F.; Perepichka, D. F. Maximizing field-effect mobility and solid-state luminescence in organic semiconductors. Angew. Chem., lnt. Ed. 2012, 51, 3837–3841.

    Article  CAS  Google Scholar 

  18. Qin, Z. S.; Gao, H. K.; Liu, J. Y.; Zhou, K.; Li, J.; Dang, Y. Y.; Huang, L.; Deng, H. X.; Zhang, X. T.; Dong, H. L. et al. High-efficiency single-component organic light-emitting transistors. Adv. Mater. 2019, 31, 1903175.

    Article  Google Scholar 

  19. Deng, J.; Xu, Y. X.; Liu, L. Q.; Feng, C. F.; Tang, J.; Gao, Y.; Wang, Y.; Yang, B.; Lu, P.; Yang, W. S. et al. An ambipolar organic field-effect transistor based on an AIE-active single crystal with a high mobility level of 2.0 cm2·V−1·s−1. Chem. Commun. 2016, 52, 2370–2373.

    Article  CAS  Google Scholar 

  20. Liu, L. Q.; Cai, C.; Zhang, Z. J.; Zhang, S. T.; Deng, J.; Yang, B.; Gu, C.; Ma, Y. G. Lamellar organic light-emitting crystals exhibiting spectral gain and 3.6% external quantum efficiency in transistors. ACS Mater. Lett. 2021, 3, 428–432.

    Article  CAS  Google Scholar 

  21. Capelli, R.; Dinelli, F.; Gazzano, M.; D’Alpaos, R.; Stefani, A.; Generali, G.; Riva, M.; Montecchi, M.; Giglia, A.; Pasquali, L. Interface functionalities in multilayer stack organic light emitting transistors (OLETs). Adv. Funct. Mater. 2014, 24, 5603–5613.

    Article  CAS  Google Scholar 

  22. Muhieddine, K.; Ullah, M.; Maasoumi, F.; Burn, P. L.; Namdas, E. B. Hybrid area-emitting transistors: Solution processable and with high aperture ratios. Adv. Mater. 2015, 27, 6677–6682.

    Article  CAS  Google Scholar 

  23. Shang, H.; Shimotani, H.; Kanagasekaran, T.; Tanigaki, K. Separation in the roles of carrier transport and light emission in light-emitting organic transistors with a bilayer configuration. ACS Appl. Mater. Interfaces 2019, 11, 20200–20204.

    Article  CAS  Google Scholar 

  24. Capelli, R.; Toffanin, S.; Generali, G.; Usta, H.; Facchetti, A.; Muccini, M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 2010, 9, 496–503.

    Article  CAS  Google Scholar 

  25. Zhou, K.; Liu, J.; Dong, H. L.; Ding, S.; Zhen, Y. G.; Shi, Y. M.; Hu, W. P. Enhanced ambipolar charge transport for efficient organic single crystal light-emitting transistors with a narrowed ambipolar regime. J. Mater. Chem. C 2020, 8, 16333–16338.

    Article  CAS  Google Scholar 

  26. Zaumseil, J.; Groves, C.; Winfield, J. M.; Greenham, N. C.; Sirringhaus, H. Electron-hole recombination in uniaxially aligned semiconducting polymers. Adv. Funct. Mater. 2008, 18, 3630–3637.

    Article  CAS  Google Scholar 

  27. Schidleja, M.; Melzer, C.; von Seggern, H. Investigation of charge-carrier injection in ambipolar organic light-emitting field-effect transistors. Adv. Mater. 2009, 21, 1172–1176.

    Article  CAS  Google Scholar 

  28. Kabra, D.; Lu, L. P.; Song, M. H.; Snaith, H. J.; Friend, R. H. Efficient single-layer polymer light-emitting diodes. Adv. Mater. 2010, 22, 3194–3198.

    Article  CAS  Google Scholar 

  29. Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199.

    Article  CAS  Google Scholar 

  30. McNeill, C. R.; Greenham, N. C. Conjugated-polymer blends for optoelectronics. Adv. Mater. 2009, 21, 3840–3850.

    Article  CAS  Google Scholar 

  31. Gao, X.; Duan, S. M.; Li, J. F.; Khan, D.; Zou, Y.; Zheng, L.; Liu, J.; Ren, X. C.; Hu, W. P. Deposition rate related DPA OFET threshold voltage shift and hysteresis variation. J. Mater. Chem. C 2018, 6, 12498–12502.

    Article  CAS  Google Scholar 

  32. Yu, J.; Zhao, X. M.; Liu, B. H.; Liang, H.; Shi, H. M.; Liu, X. Q.; Wang, Z.; Liu, Y. E. Reduction in lasing threshold of hollow-core microstructured optical fiber optofluidic laser based on fluorescence resonant energy transfer. Opt. Fiber Technol. 2020, 58, 102281.

    Article  CAS  Google Scholar 

  33. Jiang, Y.; Liu, Y. Y.; Liu, X.; Lin, H.; Gao, K.; Lai, W. Y.; Huang, W. Organic solid-state lasers: A materials view and future development. Chem. Soc. Rev. 2020, 49, 5885–5944.

    Article  CAS  Google Scholar 

  34. Jiang, Y.; Li, K. F.; Gao, K.; Lin, H.; Tam, H. L.; Liu, Y. Y.; Shu, Y.; Wong, K. L.; Lai, W. Y.; Cheah, K. W. et al. Frequency-upconverted stimulated emission by up to six-photon excitation from highly extended spiro-fused ladder-type oligo(p-phenylene)s. Angew. Chem., Int. Ed. 2021, 60, 10007–10015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 51602200, 61874074, 51633006, 51703160, 91433115, 21473222, and 21661132006), the Key Project of the Department of Education of Guangdong Province (No. 2016KZDXM008), the Shenzhen Peacock Plan (No. KQTD2016053112042971), and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanli Dong, Wenping Hu or Yumeng Shi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Tang, J., Fang, S. et al. Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Res. 15, 3647–3652 (2022). https://doi.org/10.1007/s12274-021-3959-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3959-x

Keywords

Navigation