Skip to main content
Log in

An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cluster-based functional materials have made remarkable progress owing to their wonderful structures and distinctive physicochemical performances, one of on-going advancements of which is basically driven by synthetic chemistry of exploring and constructing novel nanosized gigantic polyoxometalate (POM) aggregates. In this article, an unprecedented nanoscale hexameric arsenotungstate aggregate Na9K16H4[Er0.5K0.5(H2O)7][Er5W10O26(H2O)14][B-α-AsW9O33]6·102H2O (1) has been synthesized by the combined synthetic strategy of simultaneously using the arsenotungstate precursor and simple tungstate material in a highly acidic aqueous solution. The {[Er5W10O26(H2O)14][B-α-AsW9O33]6}31− polyanion in 1 consists of an intriguing dumbbell-shaped pentadeca-nuclear W-Er heterometal {Er5W10O26(H2O)14}23+ cluster connecting six trilacunary [B-α-AsW9O33]9− moieties, which has never been seen previously. Furthermore, through electropolymerization of 1 and pyrrole on the conductive substrate, a thickness-controllable and robust 1-PPY (PPY = polypyrrole) hybrid film was successfully prepared, which represents the first POM-PPY film assembled from high-nuclear lanthanide (Ln) encapsulated POM and PPY hitherto. The 1-PPY film-based electrochemical biosensor exhibits a favorable recognition performance for ochratoxin A in multiple media. This work not only provides a feasible combined synthetic strategy of the POM precursor and simple tungstate material for constructing complicated multi-Ln-inserted POM aggregates, but also offers a promising electrochemical platform constructed from POM-based conductive films for identifying trace biomolecules in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsukamoto, T.; Kambe, T.; Imaoka, T.; Yamamoto, K. Modern cluster design based on experiment and theory. Nat. Rev. Chem. 2021, 5, 338–347.

    Article  CAS  Google Scholar 

  2. Peters, B.; Lichtenberger, N.; Dornsiepen, E.; Dehnen, S. Current advances in tin cluster chemistry. Chem. Sci. 2020, 11, 16–26.

    Article  CAS  Google Scholar 

  3. Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

    Article  Google Scholar 

  4. Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Metal ion-coupled electron-transfer reactions of metal-oxygen complexes. Coord. Chem. Rev. 2020, 410, 213219.

    Article  CAS  Google Scholar 

  5. Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432.

    Article  CAS  Google Scholar 

  6. Ji, M. W.; Yang, X.; Chang, S. D.; Chen, W. X.; Wang, J.; He, D. S.; Hu, Y.; Deng, Q.; Sun, Y.; Li, B. et al. RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Res., in press, https://doi.org/10.1007/s12274-021-3843-8.

  7. Li, M. F.; Zhang, B.; Cheng, T.; Yu, S.; Louisia, S.; Chen, C. B.; Chen, S. P.; Cestellos-Blanco, S.; Goddard III, W. A.; Yang, P. D. Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Res. 2021, 14, 3509–3513.

    Article  CAS  Google Scholar 

  8. Wang, J.; Wang, Z. Y.; Li, S. J.; Zang, S. Q.; Mak, T. C. W. Carboranealkynyl-protected gold nanoclusters: Size conversion and UV-Vis-NIR optical properties. Angew. Chem., Int. Ed. 2021, 60, 5959–5964.

    Article  CAS  Google Scholar 

  9. Colliard, I.; Nyman, M. CeIV70 oxosulfate rings, frameworks, supramolecular assembly, and redox activity. Angew. Chem., Int. Ed. 2021, 60, 7308–7315.

    Article  CAS  Google Scholar 

  10. Wang, D.; Liu, L. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook. Nanoscale 2020, 12, 5705–5718.

    Article  CAS  Google Scholar 

  11. Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838.

    Article  CAS  Google Scholar 

  12. Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy 2020, 68, 104349.

    Article  CAS  Google Scholar 

  13. Benseghir, Y.; Lemarchand, A.; Duguet, M.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Pino, T.; Ha-Thi, M. H.; Haouas, M.; Fontecave, M. et al. Co-immobilization of a Rh catalyst and a Keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428–9438.

    Article  CAS  Google Scholar 

  14. Yu, B.; Zhang, S. M.; Wang, X. Helical microporous nanorods assembled by polyoxometalate clusters for the photocatalytic oxidation of toluene. Angew. Chem., Int. Ed. 2021, 60, 17404–17409.

    Article  CAS  Google Scholar 

  15. Wang, J. B.; Chen, W. L.; Wang, T.; Bate, N.; Wang, C. L.; Wang, E. B. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res. 2018, 11, 4535–4548.

    Article  CAS  Google Scholar 

  16. Bayaguud, A.; Chen, K.; Wei, Y. G. Controllable synthesis of polyoxovanadate-based coordination polymer nanosheets with extended exposure of catalytic sites. Nano Res. 2016, 9, 3858–3867.

    Article  CAS  Google Scholar 

  17. Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.

    Article  CAS  Google Scholar 

  18. Wang, J. G.; Tao, Z. C.; Tian, T.; Qiu, J.; Qian, H. S.; Zha, Z. B.; Miao, Z. H.; Ma, Y.; Wang, H. Polyoxometalate nanoclusters: A potential preventative and therapeutic drug for inflammatory bowel disease. Chem. Eng. J. 2021, 416, 129137.

    Article  CAS  Google Scholar 

  19. Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149–4168.

    Article  CAS  Google Scholar 

  20. Jordan, J. W.; Lowe, G. A.; McSweeney, R. L.; Stoppiello, C. T.; Lodge, R. W.; Skowron, S. T.; Biskupek, J.; Rance, G. A.; Kaiser, U.; Walsh, D. A. et al. Host-guest hybrid redox materials self-assembled from polyoxometalates and single-walled carbon nanotubes. Adv. Mater. 2019, 31, 1904182.

    Article  CAS  Google Scholar 

  21. Gobbo, P.; Tian, L. F.; Kumar, B. V. V. S. P.; Turvey, S.; Cattelan, M.; Patil, A. J.; Carraro, M.; Bonchio, M.; Mann, S. Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nat. Commun. 2020, 11, 41.

    Article  CAS  Google Scholar 

  22. He, P.; Chen, W. L.; Li, J. P.; Zhang, H.; Li, Y. W.; Wang, E. B. Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 2020, 65, 35–44.

    Article  CAS  Google Scholar 

  23. Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.

    Article  CAS  Google Scholar 

  24. Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

    Article  CAS  Google Scholar 

  25. Stuckart, M.; Monakhov, K. Y. Polyoxometalates as components of supramolecular assemblies. Chem. Sci. 2019, 10, 4364–4376.

    Article  CAS  Google Scholar 

  26. Wang, D.; Li, Y. M.; Zhang, Y.; Xu, X.; Liu, Y.; Chen, L. J.; Zhao, J. W. Construction of Ln3+-substituted arsenotungstates modified by 2, 5-thiophenedicarboxylic acid and application in selective fluorescence detection of Ba2+ in aqueous solution. Inorg. Chem. 2020, 59, 6839–6848.

    Article  CAS  Google Scholar 

  27. Liu, J. C.; Han, Q.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Aggregation of giant cerium-bismuth tungstate clusters into a 3D porous framework with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 8416–8420.

    Article  CAS  Google Scholar 

  28. Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Self-assembly of a giant tetrahedral 3d-4f single-molecule magnet within a polyoxometalate system. Angew. Chem., Int. Ed. 2015, 54, 15574–15578.

    Article  CAS  Google Scholar 

  29. Li, H. L.; Lian, C.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. Two unusual nanosized Nd3+-substituted selenotungstate aggregates simultaneously comprising lacunary Keggin and Dawson polyoxotungstate segments. Nanoscale 2020, 12, 16091–16101.

    Article  CAS  Google Scholar 

  30. Wassermann, K.; Dickman, M. H.; Pope, M. T. Self-assembly of supramolecular polyoxometalates: The compact, water-soluble heteropolytungstate anion [AsIII12CeIII16(H2O)36W148O524]76−. Angew. Chem., Int. Ed. 1997, 36, 1445–1448.

    Article  CAS  Google Scholar 

  31. Hussain, F.; Conrad, F.; Patzke, G. R. A gadolinium-bridged polytungstoarsenate(III) nanocluster: [Gd8As12W124O432(H2O)22]60−. Angew. Chem., Int. Ed. 2009, 48, 9088–9091.

    Article  CAS  Google Scholar 

  32. Hussain, F.; Gable, R. W.; Speldrich, M.; Kögerler, P.; Boskovic, C. Polyoxotungstate-encapsulated Gd6 and Yb10 complexes. Chem. Commun. 2009, 328–330.

  33. Zhao, J. W.; Li, H. L.; Ma, X.; Xie, Z. G.; Chen, L. J.; Zhu, Y. S. Lanthanide-connecting and lone-electron-pair active trigonal-pyramidal-AsO3 inducing nanosized poly(polyoxotungstate) aggregates and their anticancer activities. Sci. Rep. 2016, 6, 26406.

    Article  CAS  Google Scholar 

  34. Xiong, J.; Yang, Z. X.; Ma, P. T.; Lin, D. M.; Zheng, Q. J.; Huo, Y. pH-controlled assembly of two polynuclear Dy(III)-containing polytungstoarsenates with magnetic and luminescence properties. Inorg. Chem. 2021, 60, 7519–7526.

    Article  CAS  Google Scholar 

  35. Ritchie, C.; Moore, E. G.; Speldrich, M.; Kögerler, P.; Boskovic, C. Terbium polyoxometalate organic complexes: Correlation of structure with luminescence properties. Angew. Chem., Int. Ed. 2010, 49, 7702–7705.

    Article  CAS  Google Scholar 

  36. Wassermann, K.; Pope, M. T. Large cluster formation through multiple substitution with lanthanide cations (La, Ce, Nd, Sm, Eu, and Gd) of the polyoxoanion [(B-α-AsO3W9O30)4(WO2)4]28−. Synthesis and structural characterization. Inorg. Chem. 2001, 40, 2763–2768.

    Article  CAS  Google Scholar 

  37. Marrot, J.; Pilette, M. A.; Haouas, M.; Floquet, S.; Taulelle, F.; López, X.; Poblet, J. M.; Cadot, E. Polyoxometalates paneling through {Mo2O2S2} coordination: Cation-directed conformations and chemistry of a supramolecular hexameric scaffold. J. Am. Chem. Soc. 2012, 134, 1724–1737.

    Article  CAS  Google Scholar 

  38. Han, Q. X.; Sun, X. P.; Li, J.; Ma, P. T.; Niu, J. Y. Beat over the old ground with new strategy: Engineering As⋯As interaction in arsenite-based dawson cluster β-[W18O54(AsO3)2]6−. Inorg. Chem. 2014, 53, 2006–2011.

    Article  CAS  Google Scholar 

  39. Huo, Y.; Huo, Z. Y.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Polyoxotungstate incorporating organotriphosphonate ligands: Synthesis, characterization, and catalytic for alkene epoxidation. Inorg. Chem. 2015, 54, 406–408.

    Article  CAS  Google Scholar 

  40. Miao, J.; Chen, Y. L.; Li, Y. W.; Cheng, J. J.; Wu, Q. Y.; Ng, K. W.; Cheng, X.; Chen, R.; Cheng, C.; Tang, Z. K. Proton conducting polyoxometalate/polypyrrole films and their humidity sensing performance. ACS Appl. Nano Mater. 2018, 1, 564–571.

    Article  CAS  Google Scholar 

  41. Li, Q. Y.; Zhang, L.; Dai, J. L.; Tang, H.; Li, Q.; Xue, H. G.; Pang, H. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem. Eng. J. 2018, 351, 441–461.

    Article  CAS  Google Scholar 

  42. Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

    Article  CAS  Google Scholar 

  43. Wang, S.-M.; Kim, Y.; Kim, B.; Han, M.; Kim, E. Ultrathin polyoxometalate coating as the redox shuttle for acid-free electrochromic polymer capacitive windows. Adv. Funct. Mater. 2019, 29, 1806590.

    Article  Google Scholar 

  44. Wang, S. M.; Wang, Y. H.; Wang, T.; Han, Z. B.; Cho, C.; Kim, E. Charge-balancing redox mediators for high color contrast electrochromism on polyoxometalates. Adv. Mater. Technol. 2020, 5, 2000326.

    Article  CAS  Google Scholar 

  45. Cheng, N.; Chen, Y.; Zhang, Y.; Liu, Y. Cucurbit[7]uril-mediated 2D single-layer hybrid frameworks assembled by tetraphenylethene and polyoxometalate toward modulation of the α-chymotrypsin activity. ACS Appl. Mater. Interfaces 2020, 12, 15615–15621.

    Article  CAS  Google Scholar 

  46. Yang, M. H.; Hong, S. B.; Yoon, J. H.; Kim, D. S.; Jeong, S. W.; Yoo, D. E.; Lee, T. J.; Lee, K. G.; Lee, S. J.; Choi, B. G. Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22220–22226.

    Article  CAS  Google Scholar 

  47. Zhang, X. P.; Ye, T. Y.; Meng, X. H.; Tian, Z. H.; Pang, L. H.; Han, Y. J.; Li, H.; Lu, G.; Xiu, F.; Yu, H. D. et al. Sustainable and transparent fish gelatin films for flexible electroluminescent devices. ACS Nano 2020, 14, 3876–3884.

    Article  CAS  Google Scholar 

  48. Li, D. H.; Wang, L.; Ji, W. H.; Wang, H. C.; Yue, X. P.; Sun, Q. Z.; Li, L.; Zhang, C. W.; Liu, J. H.; Lu, G. et al. Embedding silver nanowires into a hydroxypropyl methyl cellulose film for flexible electrochromic devices with high electromechanical stability. ACS Appl. Mater. Interfaces 2021, 13, 1735–1742.

    Article  CAS  Google Scholar 

  49. Zhang, Q.; Peng, B.; Zhao, Y. N.; Li, C. L.; Zhu, S. K.; Shi, K. Q.; Zhou, Z. Y.; Zhang, X. H.; Liu, M.; Pan, J. Y. Flexible CoFeB/silk films for biocompatible RF/microwave applications. ACS Appl. Mater. Interfaces 2020, 12, 51654–51661.

    Article  CAS  Google Scholar 

  50. Zhang, C. C.; Wu, J. X.; Sun, Y. W.; Tan, C. W.; Li, T. R.; Tu, T.; Zhang, Y. C.; Liang, Y.; Zhou, X. H.; Gao, P. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 2020, 142, 2726–2731.

    Article  CAS  Google Scholar 

  51. Pramanik, S. K.; Suzuki, H. Switchable microvalves employing a conducting polymer and their automatic operation in conjunction with micropumps with a superabsorbent polymer. ACS Appl. Mater. Interfaces 2020, 12, 37741–37749.

    Article  CAS  Google Scholar 

  52. Yin, S. X.; Lu, W. T.; Wu, X; Luo, Q. Y.; Wang, E. Q.; Guo, C. Y. Enhancing thermoelectric performance of polyaniline/single-walled carbon nanotube composites via dimethyl sulfoxide-mediated electropolymerization. ACS Appl. Mater. Interfaces 2021, 13, 3930–3936.

    Article  CAS  Google Scholar 

  53. Yin, S. X.; Lu, W. T.; Wu, R. K.; Fan, W. S.; Guo, C. Y.; Chen, G. M. Poly(3, 4-ethylenedioxythiophene)/Te/single-walled carbon nanotube composites with high thermoelectric performance promoted by electropolymerization. ACS Appl. Mater. Interfaces 2020, 12, 3547–3553.

    Article  CAS  Google Scholar 

  54. Liu, H. Q.; Wang, Y.; Mo, W. Q.; Tang, H. L.; Cheng, Z. Y.; Chen, Y.; Zhang, S. T.; Ma, H. W.; Li, B.; Li, X. B. Dendrimer-based, high-luminescence conjugated microporous polymer films for highly sensitive and selective volatile organic compound sensor arrays. Adv. Funct. Mater. 2020, 30, 1910275.

    Article  CAS  Google Scholar 

  55. Kim, J. H.; Seong, T. Y.; Ahn, K. J.; Chung, K. B.; Seok, H. J.; Seo, H. J.; Kim, H. K. The effects of film thickness on the electrical, optical, and structural properties of cylindrical, rotating, magnetron-sputtered ITO films. Appl. Surf. Sci. 2018, 440, 1211–1218.

    Article  CAS  Google Scholar 

  56. Qi, G. J.; Wu, Z. L.; Wang, H. L. Highly conductive and semitransparent free-standing polypyrrole films prepared by chemical interfacial polymerization. J. Mater. Chem. C 2013, 1, 7102–7110.

    Article  CAS  Google Scholar 

  57. Ratsch, M.; Ye, C.; Yang, Y. Z.; Zhang, A. R.; Evans, A. M.; Börjesson, K. All-carbon-linked continuous three-dimensional porous aromatic framework films with nanometer-precise controllable thickness. J. Am. Chem. Soc. 2020, 142, 6548–6553.

    Article  CAS  Google Scholar 

  58. Li, C. G.; Wang, Y. S.; Zou, Y.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Two-dimensional conjugated polymer synthesized by interfacial suzuki reaction: Towards electronic device applications. Angew. Chem., Int. Ed. 2020, 59, 9403–9407.

    Article  CAS  Google Scholar 

  59. Yin, Z. X.; Cho, S.; You, D. J.; Ahn, Y. K.; Yoo, J.; Kim, Y. S. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery. Nano Res. 2018, 11, 769–779.

    Article  CAS  Google Scholar 

  60. Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

    Article  CAS  Google Scholar 

  61. Bharti, M.; Jha, P.; Singh, A.; Chauhan, A. K.; Misra, S.; Yamazoe, M.; Debnath, A. K.; Marumoto, K.; Muthe, K. P.; Aswal, D. K. Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy 2019, 176, 853–860.

    Article  CAS  Google Scholar 

  62. Singh, A.; Salmi, Z.; Jha, P.; Joshi, N.; Kumar, A.; Decorse, P.; Lecoq, H.; Lau-Truong, S.; Aswal, D. K.; Gupta, S. K. et al. One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerization. RSC Adv. 2013, 3, 13329–13336.

    Article  CAS  Google Scholar 

  63. Wu, D.; Du, D.; Lin, Y. H. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trend. Anal. Chem. 2016, 83, 95–101.

    Article  CAS  Google Scholar 

  64. Hou, X. D.; Xu, H.; Zhen, T. Y.; Wu, W. Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci. Technol. 2020, 105, 76–92.

    Article  CAS  Google Scholar 

  65. Lin, F.; Sun, Y. J.; Lai, J. P.; Wang, K.; Tang, Y. H.; Chao, Y. G.; Yang, Y.; Feng, J. R.; Lv, F.; Zhou, P. et al. 3D PtFe clusters with cube-in-cube structure enhance oxygen reduction catalysis and electrochemical sensing. Small Methods 2018, 2, 1800073.

    Article  Google Scholar 

  66. Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.

    Article  CAS  Google Scholar 

  67. Alhamoud, Y.; Yang, D. T.; Kenston, S. S. F.; Liu, G. Z.; Liu, L. Y.; Zhou, H. B.; Ahmed, F.; Zhao, J. S. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens. Bioelectron. 2019, 141, 111418.

    Article  CAS  Google Scholar 

  68. Suea-Ngam, A.; Howes, P. D.; Stanley, C. E.; deMello, A. J. An exonuclease I-assisted silver-metallized electrochemical aptasensor for ochratoxin A detection. ACS Sens. 2019, 4, 1560–1568.

    Article  CAS  Google Scholar 

  69. Wang, Z.; Yu, H.; Han, J.; Xie, G.; Chen, S. P. Rare Co/Fe-MOFs exhibiting high catalytic activity in electrochemical aptasensors for ultrasensitive detection of ochratoxin A. Chem. Commun. 2017, 53, 9926–9929.

    Article  CAS  Google Scholar 

  70. Hu, S. S.; Ouyang, W. J.; Guo, L. H.; Lin, Z. Y.; Jiang, X. H.; Qiu, B.; Chen, G. N. Facile synthesis of Fe3O4/g-C3N4/HKUST-1 composites as a novel biosensor platform for ochratoxin A. Biosens. Bioelectron. 2017, 92, 718–723.

    Article  CAS  Google Scholar 

  71. Lv, L.; Li, D. H.; Cui, C. B.; Zhao, Y. Y.; Guo, Z. J. Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens. Bioelectron. 2017, 87, 136–141.

    Article  CAS  Google Scholar 

  72. Feng, J. H.; Li, Y. Y.; Gao, Z. Q.; Lv, H.; Zhang, X. B.; Fan, D. W.; Wei, Q. Visible-light driven label-free photoelectrochemical immunosensor based on TiO2/S-BiVO4@Ag2S nanocomposites for sensitive detection OTA. Biosens. Bioelectron. 2018, 99, 14–20.

    Article  CAS  Google Scholar 

  73. Qileng, A.; Wei, J.; Lu, N.; Liu, W. P.; Cai, Y.; Chen, M. S.; Lei, H. T.; Liu, Y. J. Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosens. Bioelectron. 2018, 106, 219–226.

    Article  CAS  Google Scholar 

  74. Wei, J.; Chen, H. M.; Chen, H. H.; Cui, Y. Y.; Qileng, A.; Qin, W. W.; Liu, W. P.; Liu, Y. J. Multifunctional peroxidase-encapsulated nanoliposomes: Bioetching-induced photoelectrometric and colorimetric immunoassay for broad-spectrum detection of ochratoxins. ACS Appl. Mater. Interfaces 2019, 11, 23832–23839.

    Article  CAS  Google Scholar 

  75. Qileng, A.; Liang, H. Z.; Huang, S. L.; Liu, W. P.; Xu, Z. L.; Liu, Y. J. Dual-function of ZnS/Ag2S nanocages in ratiometric immunosensors for the discriminant analysis of ochratoxins: Photoelectrochemistry and electrochemistry. Sens. Actuat. B Chem. 2020, 314, 128066.

    Article  CAS  Google Scholar 

  76. Wei, J.; Liu, S. Q.; Qileng, A.; Qin, W. W.; Liu, W. P.; Wang, K.; Liu, Y. J. A photoelectrochemical/colorimetric immunosensor for broad-spectrum detection of ochratoxins using bifunctional copper oxide nanoflowers. Sens. Actuat. B Chem. 2021, 330, 129380.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21871077, 21671054, 21771052, 22071042, 22171070, 91122028, and 21831001) and the Program for Innovation Teams in Science and Technology in Universities of Henan Province (No. 20IRTSTHN004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Juan Chen, Jun-Wei Zhao or Guo-Yu Yang.

Electronic Supplementary Material

12274_2021_3940_MOESM1_ESM.pdf

An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Jiang, J., Cao, MY. et al. An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode. Nano Res. 15, 3628–3637 (2022). https://doi.org/10.1007/s12274-021-3940-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3940-8

Keywords

Navigation