Skip to main content
Log in

A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a new family of two-dimensional (2D) nanomaterials, MXenes have recently attracted much attention because of high performance in versatile applications including energy storage and electrochemistry, but their specific application to biomedicine has been rarely reported, especially for theranostic nanomedicine, i.e., concurrent diagnostic imaging and therapy. This study shows for the first time surface engineering and functionalization of 2D Ti3C2 MXene nanosheets by the integration of GdW10-based polyoxometalates (POMs). These multifunctional GdW10@Ti3C2 composite nanosheets provide hyperthermal treatment with magnetic resonance (MR) and/or computed tomography (CT) imaging guidance toward tumor cells or xenografts. A tumor was effectively eradicated without further reoccurrence during the observation period. GdW10 nanoclusters that were integrated onto the surface of Ti3C2 nanosheets were demonstrated to serve as a contrast agent for contrast-enhanced CT and MR imaging based on their unique composition, thus showing the potential for diagnostic-imaging guidance and monitoring for tumor hyperthermia nanotherapy. The high in vivo biocompatibility of GdW10@Ti3C2 composite nanosheets was demonstrated to guarantee their subsequent translation into a medical treatment. This study provides a novel strategy for broadening the biomedical applications of MXenes by surface engineering and multifunctionalization, which is expected to promote further exploration of biomedical applications of MXenes in nanotheranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  Google Scholar 

  2. Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284.

    Article  Google Scholar 

  3. Chen, Y.; Wang, L. Y.; Shi, J. L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 2016, 11, 292–308.

    Article  Google Scholar 

  4. Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv. Mater. 2012, 24, 1722–1728.

    Article  Google Scholar 

  5. Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.

    Article  Google Scholar 

  6. Cheng, C.; Li, S.; Thomas, A.; Kotov, N. A.; Haag, R. Functional graphene nanomaterials based architectures: Biointeractions, fabrications, and emerging biological applications. Chem. Rev. 2017, 117, 1826–1914.

    Article  Google Scholar 

  7. Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.

    Article  Google Scholar 

  8. Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059–4062.

    Article  Google Scholar 

  9. Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X.; Cong, W. S. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394–10403.

    Article  Google Scholar 

  10. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  Google Scholar 

  11. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride materials: Controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 2012, 5, 6717–6731.

    Article  Google Scholar 

  12. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  13. Chen, M.; Chen, S. Z.; He, C. Y.; Mo, S. G.; Wang, X. Y.; Liu, G.; Zheng, N. F. Safety profile of two-dimensional Pd nanosheets for photothermal therapy and photoacoustic imaging. Nano Res. 2017, 10, 1234–1248.

    Article  Google Scholar 

  14. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  Google Scholar 

  15. Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

    Article  Google Scholar 

  16. Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Naslund, L. A.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.

    Article  Google Scholar 

  17. Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.

    Article  Google Scholar 

  18. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  Google Scholar 

  19. Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

    Google Scholar 

  20. Cheung, K. C.; Gershenfeld, N. Reversibly assembled cellular composite materials. Science 2013, 341, 1219–1221.

    Article  Google Scholar 

  21. Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594.

    Article  Google Scholar 

  22. Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P.-L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

    Article  Google Scholar 

  23. Peng, Q. M.; Guo, J. X.; Zhang, Q. R.; Xiang, J. Y.; Liu, B. Z.; Zhou, A. G.; Liu, R. P.; Tian, Y. J. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116.

    Article  Google Scholar 

  24. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  25. Xue, Q.; Zhang, H. J.; Zhu, M. S.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Huang, Y.; Huang, Y.; Deng, Q. H.; Zhou, J. et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv. Mater. 2017, 29, 1604847.

    Article  Google Scholar 

  26. Lin, H.; Wang, Y. W.; Gao, S. S.; Chen, Y.; Shi, J. L. Theranostic 2D tantalum carbide (MXene). Adv. Mater. 2018, 30, 1703284.

    Article  Google Scholar 

  27. Xu, B. Z.; Zhu, M. S.; Zhang, W. C.; Zhen, X.; Pei, Z. X.; Xue, Q.; Zhi, C. Y.; Shi, P. Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 2016, 28, 3333–3339.

    Article  Google Scholar 

  28. Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

    Article  Google Scholar 

  29. Lin, H.; Wang, X. G.; Yu, L. D.; Chen, Y.; Shi, J. L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391.

    Article  Google Scholar 

  30. Dai, C.; Lin, H.; Xu, G.; Liu, Z.; Wu, R.; Chen, Y. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017, 29, 8637–8652.

    Article  Google Scholar 

  31. Li, X. S.; Kim, J.; Yoon, J.; Chen, X. Y. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv. Mater. 2017, 29, 1606857.

    Article  Google Scholar 

  32. Zhen, Z. P.; Tang, W.; Chuang, Y. J.; Todd, T.; Zhang, W. Z.; Lin, X.; Niu, G.; Liu, G.; Wang, L. C.; Pan, Z. W. et al. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles. ACS Nano 2014, 8, 6004–6013.

    Article  Google Scholar 

  33. Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876–3883.

    Article  Google Scholar 

  34. Guo, M.; Mao, H. J.; Li, Y. L.; Zhu, A. J.; He, H.; Yang, H.; Wang, Y. Y.; Tian, X.; Ge, C. C.; Peng, Q. L. et al. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 2014, 35, 4656–4666.

    Article  Google Scholar 

  35. Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428.

    Article  Google Scholar 

  36. Liu, Z.; Davis, C.; Cai, W. B.; He, L. N.; Chen, X. Y.; Dai, H. J. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2008, 105, 1410–1415.

    Article  Google Scholar 

  37. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  38. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160–4164.

    Article  Google Scholar 

  39. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  40. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Article  Google Scholar 

  41. Qu, G. B.; Liu, W.; Zhao, Y. T.; Gao, J.; Xia, T.; Shi, J. B.; Hu, L. G.; Zhou, W. H.; Gao, J. J.; Wang, H. Y. et al. Improved biocompatibility of black phosphorus nanosheets by chemical modification. Angew. Chem. 2017, 129, 14680–14685.

    Article  Google Scholar 

  42. Zhao, Y. T.; Tong, L. P.; Li, Z. B.; Yang, N.; Fu, H. D.; Wu, L.; Cui, H. D.; Zhou, W. H.; Wang, J. H.; Wang, H. Y. et al. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chem. Mater. 2017, 29, 7131–7139.

    Article  Google Scholar 

  43. Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012, 6, 5605–5613.

    Article  Google Scholar 

  44. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359.

    Article  Google Scholar 

  45. Zheng, M. B.; Yue, C. X.; Ma, Y. F.; Gong, P.; Zhao, P. F.; Zheng, C. F.; Sheng, Z. H.; Zhang, P. F.; Wang, Z. H.; Cai, L. T. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7, 2056–2067.

    Article  Google Scholar 

  46. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

    Article  Google Scholar 

  47. Wang, J.; Liu, J.; Liu, Y.; Wang, L. M.; Cao, M. J.; Ji, Y. L.; Wu, X. C.; Xu, Y. Y.; Bai, B.; Miao, Q. et al. Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv. Mater. 2016, 28, 8950–8958.

    Article  Google Scholar 

  48. Lin, J.; Wang, M.; Hu, H.; Yang, X. Y.; Wen, B.; Wang, Z. T.; Jacobson, O.; Song, J. B.; Zhang, G. F.; Niu, G. et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and gamma-irradiation protection. Adv. Mater. 2016, 28, 3273–3279.

    Article  Google Scholar 

  49. Yong, Y.; Cheng, X. J.; Bao, T.; Zu, M.; Yan, L.; Yin, W. Y.; Ge, C. C.; Wang, D. L.; Gu, Z. J.; Zhao, Y. L. Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano 2015, 9, 12451–12463.

    Article  Google Scholar 

  50. Cheng, L.; Shen, S. D.; Shi, S. X.; Yi, Y.; Wang, X. Y.; Song, G. S.; Yang, K.; Liu, G.; Barnhart, T. E.; Cai, W. B. et al. FeSe2-decorated Bi2Se3 nanosheets fabricated via cation exchange for chelator-free 64Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv. Funct. Mater. 2016, 26, 2185–2197.

    Article  Google Scholar 

  51. Chu, C. C.; Lin, H. R.; Liu, H.; Wang, X. Y.; Wang, J. Q.; Zhang, P. F.; Gao, H. Y.; Huang, C.; Zeng, Y.; Tan, Y. Z. et al. Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Adv. Mater. 2017, 29, 1605928.

    Article  Google Scholar 

  52. Wang, J. Q.; Tao, W.; Chen, X. Y.; Farokhzad, O. C.; Liu, G. Emerging advances in nanotheranostics with intelligent bioresponsive systems. Theranostics 2017, 7, 3915–3919.

    Article  Google Scholar 

  53. Zhang, C.; Bu, W. B.; Ni, D. L.; Zuo, C. J.; Cheng, C.; Li, Q.; Zhang, L. L.; Wang, Z.; Shi, J. L. A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion. J. Am. Chem. Soc. 2016, 138, 8156–8164.

    Article  Google Scholar 

  54. Gao, N.; Sun, H. J.; Dong, K.; Ren, J. S.; Duan, T. C.; Xu, C.; Qu, X. G. Transition-metal-substituted polyoxometalate derivatives as functional anti-amyloid agents for Alzheimer’s disease. Nat. Commun. 2014, 5, 3422.

    Article  Google Scholar 

  55. Geng, J.; Li, M.; Ren, J. S.; Wang, E. B.; Qu, X. G. Polyoxometalates as inhibitors of the aggregation of amyloid beta peptides associated with Alzheimer’s disease. Angew. Chem., Int. Ed. 2011, 50, 4184–4188.

    Article  Google Scholar 

  56. Yong, Y.; Zhang, C. F.; Gu, Z. J.; Du, J. F.; Guo, Z.; Dong, X. H.; Xie, J. N.; Zhang, G. J.; Liu, X. F.; Zhao, Y. L. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano 2017, 11, 7164–7176.

    Article  Google Scholar 

  57. Nisar, A.; Zhuang, J.; Wang, X. Construction of amphiphilic polyoxometalate mesostructures as a highly efficient desulfurization catalyst. Adv. Mater. 2011, 23, 1130–1135.

    Article  Google Scholar 

  58. Ju, F. F.; VanderVelde, D.; Nikolla, E. Molybdenum-based polyoxometalates as highly active and selective catalysts for the epimerization of aldoses. ACS Catal. 2014, 4, 1358–1364.

    Article  Google Scholar 

  59. Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X. H.; Du, J. F.; Xie, J. N.; Wang, Q.; Gu, Z. J.; Zhao, Y. L. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor. Adv. Mater. 2017, 29, 1704136.

    Article  Google Scholar 

  60. Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, S.; Chang, J. et al. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 2016, 10, 10245–10257.

    Article  Google Scholar 

  61. Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliver. Rev. 2011, 63, 136–151.

    Article  Google Scholar 

  62. Menon, D.; Thomas, R. T.; Narayanan, S.; Maya, S.; Jayakumar, R.; Hussain, F.; Lakshmanan, V.-K.; Nair, S. V. A novel chitosan/polyoxometalate nano-complex for anticancer applications. Carbohydr. Polym. 2011, 84, 887–893.

    Article  Google Scholar 

  63. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

    Article  Google Scholar 

  64. Zeng, J.; Goldfeld, D.; Xia, Y. N. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem., Int. Ed. 2013, 52, 4169–4173.

    Article  Google Scholar 

  65. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566.

    Article  Google Scholar 

  66. Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dualmodal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.

    Article  Google Scholar 

  67. Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247.

    Article  Google Scholar 

  68. Ni, D. L.; Zhang, J. W.; Wang, J.; Hu, P.; Jin, Y. Y.; Tang, Z. M.; Yao, Z. W.; Bu, W. B.; Shi, J. L. Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd3+-doped contrast agent. ACS Nano 2017, 11, 4256–4264.

    Article  Google Scholar 

  69. Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896–11900.

    Article  Google Scholar 

  70. Wang, S.; Cao, Y. B.; Zhang, Q.; Peng, H. B.; Liang, L.; Li, Q. G.; Shen, S.; Tuerdi, A.; Xu, Y.; Cai, S. J. et al. New application of old material: Chinese traditional ink for photothermal therapy of metastatic lymph nodes. ACS Omega 2017, 2, 5170–5178.

    Article  Google Scholar 

  71. Li, Y.; Liu, Z. M.; Hou, Y. Q.; Yang, G. C.; Fei, X. X.; Zhao, H. N.; Guo, Y. X.; Su, C. K.; Wang, Z.; Zhong, H. Q. et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 25098–25106.

    Article  Google Scholar 

  72. Deng, L. M.; Cai, X. J.; Sheng, D. L.; Yang, Y.; Strohm, E. M.; Wang, Z. G.; Ran, H. T.; Wang, D.; Zheng, Y. Y.; Li, P. et al. A laser-activated biocompatible theranostic nanoagent for targeted multimodal imaging and photothermal therapy. Theranostics 2017, 7, 4410–4423.

    Article  Google Scholar 

  73. Guo, W.; Qiu, Z. Y.; Guo, C. S.; Ding, D. D.; Li, T. C.; Wang, F.; Sun, J. Z.; Zheng, N. N.; Liu, S. Q. Multifunctional theranostic agent of Cu2(OH)PO4 quantum dots for photoacoustic image-guided photothermal/photodynamic combination cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 9348–9358.

    Article  Google Scholar 

  74. Wang, X. W.; Li, F.; Yan, X.; Ma, Y.; Miao, Z. H.; Dong, L.; Chen, H. J.; Lu, Y.; Zha, Z. B. Ambient aqueous synthesis of ultrasmall Ni0.85Se nanoparticles for noninvasive photoacoustic imaging and combined photothermalchemotherapy of cancer. ACS Appl. Mater. Interfaces 2017, 9, 41782–41793.

    Article  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the financial support from the National Key Research and Development Program of China (No. 2016YFA0203700), National Natural Science Foundation of China (No. 51672303), Young Elite Scientist Sponsorship Program by CAST (No. 2015QNRC001), the Environmental Functional Materials Innovation Team of Ministry of Education (No. IRT_16R49) and the International Joint Laboratory on Resource Chemistry (IJLRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huixia Wu or Yu Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, L., Wu, H., Lin, H. et al. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 11, 4149–4168 (2018). https://doi.org/10.1007/s12274-018-2002-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2002-3

Keywords

Navigation