Skip to main content
Log in

Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical nitrogen reduction reaction (NRR) under ambient conditions is highly desirable to achieve sustainable ammonia (NH3) production via an alternative carbon free strategy. Single-atom catalysts (SACs) with super high atomic utilization and catalytic efficiency exhibit great potential for NRR. Herein, a high-performance NRR SAC is facilely prepared via a simple deposition method to anchor Au single atoms onto porous β-FeOOH nanotubes. The resulting Au-SA/FeOOH can efficiently drive NRR under ambient conditions, and the NH3 yield reaches as high as 2,860 µg·h−1·mgAu−1 at −0.4 V vs. reversible hydrogen electrode (RHE) with 14.2% faradaic efficiency, much superior to those of all the reported Au-based electrocatalysts. Systematic investigations demonstrate that the synergy of much enhanced N2 adsorption, directional electron export, and mass transfer ability in Au-SA/FeOOH greatly contributes to the superior NRR activity. This work highlights a new insight into the design of high efficient NRR electrocatalysts by combination of porous metal oxide matrix and highly active single-atom sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

    Article  CAS  Google Scholar 

  2. Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

    Article  Google Scholar 

  3. Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

    Article  CAS  Google Scholar 

  4. Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.

    Article  CAS  Google Scholar 

  5. Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.

    Article  CAS  Google Scholar 

  6. Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3·mgcat.−1µh−1 for N2 electrochemical reduction over Ru singleatom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  7. Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Hang, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

    Article  CAS  Google Scholar 

  8. Lin, G. X.; Ju, Q. J.; Guo, X. W.; Zhao, W.; Adimi, S.; Ye, J. Y.; Bi, Q. Y.; Wang, J. C.; Yang, M. H.; Huang, F. Q. Intrinsic electron localization of metastable MoS2 boosts electrocatalytic nitrogen reduction to ammonia. Adv. Mater. 2021, 33, 2007509.

    Article  CAS  Google Scholar 

  9. Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

    Article  Google Scholar 

  10. Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlogl, R. The Haber-Bosch process revisited: On the real structure and stability of pammonia ironq under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723–12726.

    Article  CAS  Google Scholar 

  11. Zhao, R. B.; Xie, H. T.; Chang, L.; Zhang, X. X.; Zhu, X. J.; Tong, X.; Wang, T.; Luo, Y. L.; Wei, P. P.; Wang, Z. M. et al. Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem 2019, 1, 100011.

    Article  Google Scholar 

  12. Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

    Article  Google Scholar 

  13. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    Article  CAS  Google Scholar 

  14. Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

    Article  CAS  Google Scholar 

  15. Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

    Article  CAS  Google Scholar 

  16. Chen, H. J.; Liang, J.; Li, L.; Zheng, B. Z.; Feng, Z. S.; Xu, Z. Q.; Luo, Y. L.; Liu, Q.; Shi, X. F.; Liu, Y. et al. Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 41715–41722.

    Article  CAS  Google Scholar 

  17. Wen, G. L.; Liang, J.; Liu, Q.; Li, T. S.; An, X. G.; Zhang, F.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Kong, Q. Q. et al. Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray. Nano Res. 2022, 15, 972–977.

    Article  CAS  Google Scholar 

  18. Du, Z. B.; Liang, J.; Li, S. X.; Xu, Z. Q.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Liu, Y.; Kong, Q. Q. et al. Alkylthiol surface engineering: An effective strategy toward enhanced electrocatalytic N2-to-NH3 fixation by a CoP nanoarray. J. Mater. Chem. A 2021, 9, 13861–13866.

    Article  CAS  Google Scholar 

  19. Yang, Y. J.; Wang, S. Q.; Wen, H. M.; Ye, T.; Chen, J.; Li, C. P.; Du, M. Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362–15366.

    Article  CAS  Google Scholar 

  20. Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

    Article  CAS  Google Scholar 

  21. Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Adsorbing and activating N2 on heterogeneous Au-Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

    Article  CAS  Google Scholar 

  22. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Article  Google Scholar 

  23. Xue, Z. H.; Zhang, S. N.; Lin, Y. X.; Su, H.; Zhai, G. Y.; Han, J. T.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% faradaic efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980.

    Article  CAS  Google Scholar 

  24. Wang, P. T.; Ji, Y. J.; Shao, Q.; Li, Y. Y.; Huang, X. Q. Core@shell structured Au@SnO2 nanoparticles with improved N2 adsorption/activation and electrical conductivity for efficient N2 fixation. Sci. Bull. 2020, 65, 350–358.

    Article  CAS  Google Scholar 

  25. Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.

    Article  Google Scholar 

  26. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. NanoRes., inpress, DOI:https://doi.org/10.1007/s12274-021-3794-0.

  27. Qi, S. Y.; Wang, J. R.; Song, X. H.; Fan, Y. C.; Li, W. F.; Du, A. J.; Zhao, M. W. Synergistic trifunctional electrocatalysis of pyridinic nitrogen and single transition-metal atoms anchored on pyrazine-modified graphdiyne. Sci. Bull. 2020, 65, 995–1002.

    Article  CAS  Google Scholar 

  28. Zhou, P.; Chao, Y. G.; Lv, F.; Lai, J. P.; Wang, K.; Guo, S. J. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Sci. Bull. 2020, 65, 720–725.

    Article  CAS  Google Scholar 

  29. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    Article  CAS  Google Scholar 

  30. Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

    Article  Google Scholar 

  31. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  32. Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

    Article  CAS  Google Scholar 

  33. Peng, Y.; Lu, B. Z.; Chen, S. W. Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv. Mater. 2018, 30, 1801995.

    Article  Google Scholar 

  34. Wang, Y.; Wang, D. S.; Li, Y. D. Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis. J. Energy Chem. 2022, 65, 103–115.

    Article  Google Scholar 

  35. Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.

    Article  CAS  Google Scholar 

  36. Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.

    Article  CAS  Google Scholar 

  37. Liu, J. Q.; Zheng, M. B.; Shi, X. Q.; Zeng, H. B.; Xia, H. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 2016, 26, 919–930.

    Article  CAS  Google Scholar 

  38. Zhu, X. J.; Liu, Z. C.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wang, F. X.; Luo, Y. L.; Wu, Y. P.; Sun, X. P. Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping. Chem. Commun. 2019, 55, 3987–3990.

    Article  CAS  Google Scholar 

  39. Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332–11335.

    Article  CAS  Google Scholar 

  40. Zhu, X. J.; Zhao, J. X.; Ji, L.; Wu, T. W.; Wang, T.; Gao, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Luo, Y. L.; Xiang, Y. M. et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209–214.

    Article  CAS  Google Scholar 

  41. Nazemi, M.; Ou, P. F.; Alabbady, A.; Soule, L.; Liu, A. L.; Song, J.; Sulchek, T. A.; Liu, M. L.; El-Sayed, M. A. Electrosynthesis of ammonia using porous bimetallic Pd-Ag nanocatalysts in liquid- and gas-phase systems. ACS Catal. 2020, 10, 10197–10206.

    Article  CAS  Google Scholar 

  42. Guo, C. Y.; Liu, X. J.; Gao, L. F.; Kuang, X.; Ren, X.; Ma, X. J.; Zhao, M. Z.; Yang, H.; Sun, X.; Wei, Q. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions. Appl. Catal. B Environ. 2020, 263, 118296.

    Article  CAS  Google Scholar 

  43. Lin, H.; Wang, J. W.; Guo, X. W.; Yao, S.; Liu, M.; Zhang, Z. M.; Lu, T. B. Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2018, 6, 24479–24485.

    Article  CAS  Google Scholar 

  44. Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590.

    Article  CAS  Google Scholar 

  45. Mao, B. D.; Kang, Z. H.; Wang, E. B.; Tian, C. G.; Zhang, Z. M.; Wang, C. L.; Li, S. H. Polyoxometalate-assisted one-step fabrication of porous nanorods of β-FeOOH and the facile transition to hematite. Chem. Lett. 2007, 36, 70–71.

    Article  CAS  Google Scholar 

  46. Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279–289.

    Article  CAS  Google Scholar 

  47. Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

    Article  Google Scholar 

  48. Sham, L. J.; Kohn, W. One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. 1966, 145, 561–567.

    Article  CAS  Google Scholar 

  49. Yao, C. H.; Guo, N.; Xi, S. B.; Xu, C. Q.; Liu, W.; Zhao, X. X.; Li, J.; Fang, H. Y.; Su, J.; Chen, Z. X. et al. Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 2020, 11, 4389.

    Article  CAS  Google Scholar 

  50. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X. L.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406.

    Article  Google Scholar 

  51. Wang, Z. Q.; Li, Y. H.; Yu, H. J.; Xu, Y.; Xue, H. R.; Li, X. N.; Wang, H. J.; Wang, L. Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower-like gold microstructures. ChemSusChem 2018, 11, 3480–3485.

    Article  Google Scholar 

  52. Chen, Y. C.; Lin, Y. G.; Hsu, Y. K.; Yen, S. C.; Chen, K. H.; Chen, L. C. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 2014, 10, 3803–3810.

    Article  CAS  Google Scholar 

  53. McIntyre, N. S.; Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 1997, 49, 1521–1529.

    Article  Google Scholar 

  54. Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem. Mater. 1990, 2, 186–191.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin City of China (No. 18JCJQJC47700), the Key Laboratory of Resource Chemistry of Chinese Ministry of Education (No. KLRC_ME1902), the Opening Project of Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Chinese Ministry of Education, the National Natural Science Foundation of China (No. 21701168), Dalian high level talent innovation project (No. 2019RQ063), the Open Project Foundation of State Key Laboratory of Structural Chemistry, and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (No. 20200021). We gratefully acknowledge the BL14W1 beamline station of Shanghai Synchrotron Radiation Facility (SSRF) for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangwei Zhang or Zhi-Ming Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yin, HQ., Shi, W. et al. Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Res. 15, 3026–3033 (2022). https://doi.org/10.1007/s12274-021-3937-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3937-3

Keywords

Navigation