Skip to main content
Log in

Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Herein, we prepared a bimetallic layered double hydroxide (FeCo LDH) featuring a dandelion-like structure. Anchoring of CeO2 onto FeCo LDH produced interfaces between the functionalizing CeO2 and the parent LDH. Comparative electrochemical studies were carried out. Onset potential, overpotential, and Tafel slope point to the superior oxygen-evolving performance of CeO2-FeCo LDH with respect to FeCo LDH, therefore, demonstrating the merits of CeO2 functionalization. The electronic structures of Fe, Co, and Ce were analyzed by X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) from which the increase of Co3+ and the concurrent lowering of Ce4+ were established. With the use of CeO2-FeCo LDH, accelerated formation at a sizably reduced potential of Co-OOH, one of the key intermediates preceding the release of O2 was observed by in situ Raman spectroscopy. We now have the atomic-level and location-specific evidence, the increase of the active Co3+ across the interface to correlate the enhanced catalytic performance with CeO2 functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 4998.

    Article  Google Scholar 

  2. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  Google Scholar 

  3. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  4. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254–260.

    Article  CAS  Google Scholar 

  5. Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83–89.

    Article  CAS  Google Scholar 

  6. Lu, F.; Zhou, M.; Zhou, Y. X.; Zeng, X. H. First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: Basic principles and recent advances. Small 2017, 13, 1701931.

    Article  Google Scholar 

  7. Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

    Article  CAS  Google Scholar 

  8. Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

    Article  CAS  Google Scholar 

  9. Zhao, J. W.; Li, C. F.; Shi, Z. X.; Guan, J. L.; Li, G. R. Boosting lattice oxygen oxidation of perovskite to efficiently catalyze oxygen evolution reaction by FeOOH: decoration. Research 2020, 2020, 6961578.

    Article  CAS  Google Scholar 

  10. Xu, H.; Shi, Z. X.; Tong, Y. X.; Li, G. R. Porous microrod arrays constructed by carbon-confined NiCo@NiCoO2 core@shell nanoparticles as efficient electrocatalysts for oxygen evolution. Adv. Mater. 2018, 30, 1705442.

    Article  Google Scholar 

  11. Li, C. F.; Zhao, J. W.; Xie, L. J.; Wu, J. Q.; Ren, Q.; Wang, Y.; Li, G. R. Surface-adsorbed carboxylate ligands on layered double hydroxides/metal-organic frameworks promote the electrocatalytic oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 18129–18137.

    Article  CAS  Google Scholar 

  12. Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

    Article  CAS  Google Scholar 

  13. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

  14. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

    Article  CAS  Google Scholar 

  15. Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

    Article  CAS  Google Scholar 

  16. Burke, M. S.; Enman, L. J.; Batchellor, A. S.; Zou, S. H.; Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549–7558.

    Article  CAS  Google Scholar 

  17. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  CAS  Google Scholar 

  18. Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

    Article  CAS  Google Scholar 

  19. Corrigan, D. A.; Conell, R. S.; Fierro, C. A.; Scherson, D. A. In-situ moessbauer study of redox processes in a composite hydroxide of iron and nickel. J. Phys. Chem. 1987, 91, 5009–5011.

    Article  CAS  Google Scholar 

  20. Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

    Article  CAS  Google Scholar 

  21. Chen, J. S.; Li, H.; Chen, S. M.; Fei, J. Y.; Liu, C.; Yu, Z. X.; Shin, K.; Liu, Z. W.; Song, L.; Henkelman, G. et al. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts. Adv. Energy Mater. 2021, 11, 2003412.

    Article  CAS  Google Scholar 

  22. Gao, W.; Xia, Z. M.; Cao, F. X.; Ho, J. C.; Jiang, Z.; Qu, Y. Q. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Funct. Mater. 2018, 28, 1706056.

    Article  Google Scholar 

  23. Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.

    Article  Google Scholar 

  24. Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; Xiong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484–6490.

    Article  CAS  Google Scholar 

  25. Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698–4703.

    Article  CAS  Google Scholar 

  26. Zhao, D. D.; Pi, Y. C.; Shao, Q.; Feng, Y. G.; Zhang, Y.; Huang, X. Q. Enhancing oxygen evolution electrocatalysis via the intimate hydroxide-oxide interface. ACS Nano 2018, 12, 6245–6251.

    Article  CAS  Google Scholar 

  27. Xia, J. L.; Zhao, H. Y.; Huang, B. L.; Xu, L. L.; Luo, M.; Wang, J. W.; Luo, F.; Du, Y. P.; Yan, C. H. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1908367.

    Article  CAS  Google Scholar 

  28. Yu, J.; Wang, J.; Long, X.; Chen, L.; Cao, Q.; Wang, J.; Qiu, C.; Lim, J.; Yang, S. H. Formation of FeOOH nanosheets induces substitutional doping of CeO2−x with high-valence Ni for efficient water oxidation. Adv. Energy Mater. 2021, 11, 2002731.

    Article  CAS  Google Scholar 

  29. Liu, M. J.; Min, K. A.; Han, B.; Lee, L. Y. S. Interfacing or doping? Role of Ce in highly promoted water oxidation of NiFe-layered double hydroxide. Adv. Energy Mater. 2021, 11, 2101281.

    Article  CAS  Google Scholar 

  30. Wen, Y. Y.; Wei, Z. T.; Liu, J. H.; Li, R.; Wang, P.; Zhou, B.; Zhang, X.; Li, J.; Li, Z. X. Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution. J. Energy. Chem. 2021, 52, 412–420.

    Article  Google Scholar 

  31. Wu, X. X.; Zhang, T.; Wei, J. X.; Feng, P. F.; Yan, X. B.; Tang, Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Res. 2020, 13, 2130–2135.

    Article  CAS  Google Scholar 

  32. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    Article  CAS  Google Scholar 

  33. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2014, 126, 7714–7718.

    Article  Google Scholar 

  34. Liu, J. T.; Ye, L. Y.; Xiong, W. H.; Liu, T. R.; Yang, H.; Lei, J. P. A cerium oxide@metal-organic framework nanoenzyme as a tandem catalyst for enhanced photodynamic therapy. Chem. Commun. 2021, 57, 2820–2823.

    Article  CAS  Google Scholar 

  35. Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem. 2018, 57, 8654–8658.

    Article  CAS  Google Scholar 

  36. Zheng, Y.; Zhao, C. H.; Li, Y. F.; Zhang, W. Q.; Wu, T.; Wang, Z. C.; Li, Z. P.; Chen, J.; Wang, J. C.; Yu, B. et al. Directly visualizing and exploring local heterointerface with high electro-catalytic activity. Nano Energy 2020, 78, 105236.

    Article  CAS  Google Scholar 

  37. Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D. et al. Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2101239.

    Article  CAS  Google Scholar 

  38. Yang, G.; Möbus, G.; Hand, R. J. Cerium and boron chemistry in doped borosilicate glasses examined by EELS. Micron 2006, 37, 433–441.

    Article  CAS  Google Scholar 

  39. Li, L. J.; Hu, Z. F.; Tao, L.; Xu, J. B.; Yu, J. C. Efficient electronic transport in partially disordered Co3O4 nanosheets for electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 3071–3081.

    Article  CAS  Google Scholar 

  40. Kou, Z. K.; Yu, Y.; Liu, X. M.; Gao, X. R.; Zheng, L. R.; Zou, H. Y.; Pang, Y. J.; Wang, Z. Y.; Pan, Z. H.; He, J. Q. et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of y-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020, 10, 4411–4419.

    Article  CAS  Google Scholar 

  41. Wang, X. Y.; Liu, Y.; Zhang, T. H.; Luo, Y. J.; Lan, Z. X.; Zhang, K.; Zuo, J. C.; Jiang, L. L.; Wang, R. H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: In situ DRIFTS study coupled with Raman and XAFS spectroscopy. ACS Catal. 2017, 7, 1626–1636.

    Article  CAS  Google Scholar 

  42. Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shenzhen Nobel Prize Scientists Laboratory Project (No. C17213101), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (No. 2018B030322001), China Postdoctoral Science Foundation (No. 2018M642133, X. Z.), Post-doctorate Scientific Research Fund for staying (coming to) Shenzhen (No. K21217502, X. Z.) and the National Natural Science Foundation of China (No. 21671096, Z. L.). Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials (ZDSYS20200421111401738, Z.L.). The authors also acknowledge the assistance of Southern University of Science and Technology Core Research Facilities (SUSTech CRF) and Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Zhang, Zhouguang Lu or Zhiping Zheng.

Electronic Supplementary Material

12274_2021_3931_MOESM1_ESM.pdf

Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, W., Wu, D. et al. Atomic-level correlation between the electrochemical performance of an oxygen-evolving catalyst and the effects of CeO2 functionalization. Nano Res. 15, 2994–3000 (2022). https://doi.org/10.1007/s12274-021-3931-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3931-9

Keywords

Navigation