Skip to main content
Log in

Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous laminar membranes hold great promise to realize ultrafast ion transfer if efficient and stable transfer channels are constructed in vertical direction. Here, metal-organic framework (MOF) nanosheets bearing imidazole molecules in the pores were designed as building blocks to assemble free-standing MOF laminar membrane. Then, Nafion chains were threaded into the pores induced by electrostatic attraction from imidazole molecules by slowly filtering dilute Nafion solution. We demonstrate that the threaded Nafion chains lock adjacent MOF nanosheets, affording highly enhanced structural stability to the resultant laminar membrane with almost no water swelling. Significantly, abundant acid-base pairs are formed in the pores along Nafion chains, working as efficient, continuous conduction pathways in vertical direction. Proton conductivities as high as 110 and 46 mS·cm−1 are obtained by this membrane under 100% and 40% relative humidity (RH), respectively, which are two orders of magnitude higher than that of pristine MOF membrane. The conductivity under low humidity (40% RH) is even over 2 times higher than that of commercial Nafion membrane, generating the maximum power density of 1,100 mW·cm−2 in hydrogen fuel cell (vs. 291 mW·cm−2 of Nafion membrane). Besides, the influence of water state on proton transfer in confined space is investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, G. P.; Jin, W. Q.; Xu, N. P. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angew. Chem., Int. Ed. 2016, 55, 13384–13397.

    Article  CAS  Google Scholar 

  2. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

    Article  CAS  Google Scholar 

  3. Zhang, W. H.; Yin, M. J.; Zhao, Q.; Jin, C. G.; Wang, N. X.; Ji, S. L.; Ritt, C. L.; Elimelech, M.; An, Q. F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 2021, 16, 337–343.

    Article  Google Scholar 

  4. Xie, X. Q.; Chen, C.; Zhang, N.; Tang, Z. R.; Jiang, J. J.; Xu, Y. J. Microstructure and surface control of MXene films for water purification. Nat. Sustain. 2019, 2, 856–862.

    Article  Google Scholar 

  5. Wang, J. T.; Chen, P. P.; Shi, B. B.; Guo, W. W.; Jaroniec, M.; Qiao, S. Z. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angew. Chem., Int. Ed. 2018, 57, 6814–6818.

    Article  CAS  Google Scholar 

  6. Bai, S. Y.; Liu, X. Z.; Zhu, K.; Wu, S. C.; Zhou, H. S. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 2016, 1, 16094.

    Article  CAS  Google Scholar 

  7. Tian, M.; Pei, F.; Yao, M. S.; Fu, Z. H.; Lin, L. L.; Wu, G. D.; Xu, G.; Kitagawa, H.; Fang, X. L. Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Stor. Mater. 2019, 21, 14–21.

    Google Scholar 

  8. Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

    Article  CAS  Google Scholar 

  9. Qian, X. T.; Chen, L.; Yin, L. C.; Liu, Z. B.; Pei, S. F.; Li, F.; Hou, G. J.; Chen, S. M.; Song, L.; Thebo, K. H. et al. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370, 596–600.

    Article  CAS  Google Scholar 

  10. Cao, L.; Wu, H.; Cao, Y.; Fan, C. Y.; Zhao, R.; He, X. Y.; Yang, P. F.; Shi, B. B.; You, X. D.; Jiang, Z. Y. Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 2020, 32, 2005565.

    Article  Google Scholar 

  11. Karim, M. R.; Hatakeyama, K.; Matsui, T.; Takehira, H.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y.; Akutagawa, T.; Nakamura, T.; Noro, S. I. et al. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100.

    Article  CAS  Google Scholar 

  12. Chang, D. W.; Baek, J. B. Charge transport in graphene oxide. Nano Today 2017, 17, 38–53.

    Article  CAS  Google Scholar 

  13. Cao, L.; Wu, H.; Yang, P. F.; He, X. Y.; Li, J. Z.; Li, Y.; Xu, M. Z.; Qiu, M.; Jiang, Z. Y. Graphene oxide-based solid electrolytes with 3D prepercolating pathways for efficient proton transport. Adv. Funct. Mater. 2018, 28, 1804944.

    Article  Google Scholar 

  14. Joshi, R. K.; Carbone, P.; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754.

    Article  CAS  Google Scholar 

  15. Hatakeyama, K.; Karim, M. R.; Ogata, C.; Tateishi, H.; Funatsu, A.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Proton conductivities of graphene oxide nanosheets: Single, multilayer, and modified nanosheets. Angew. Chem., Int. Ed. 2014, 53, 6997–7000.

    Article  CAS  Google Scholar 

  16. Bayer, T.; Selyanchyn, R.; Fujikawa, S.; Sasaki, K.; Lyth, S. M. Spray-painted graphene oxide membrane fuel cells. J. Membr. Sci. 2017, 541, 347–357.

    Article  CAS  Google Scholar 

  17. Wan, S. J.; Jiang, L.; Cheng, Q. F. Design principles of highperformance graphene films: Interfaces and alignment. Matter 2020, 3, 696–707.

    Article  Google Scholar 

  18. Wan, S. J; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

    Article  CAS  Google Scholar 

  19. Jang, D.; Idrobo, J. C.; Laoui, T.; Karnik, R. Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes. ACS Nano 2017, 11, 10042–10052.

    Article  CAS  Google Scholar 

  20. Sapkota, B.; Liang, W. T.; VahidMohammadi, A.; Karnik, R.; Noy, A.; Wanunu, M. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 2020, 11, 2747.

    Article  CAS  Google Scholar 

  21. Hatakeyama, K.; Karim, M. R.; Ogata, C.; Tateishi, H.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Optimization of proton conductivity in graphene oxide by filling sulfate ions. Chem. Commun. 2014, 50, 14527–14530.

    Article  CAS  Google Scholar 

  22. Wang, J. T; Liu, Y. R.; Dang, J. C.; Zhou, G. L.; Wang, Y.; Zhang, Y. F.; Qu, L. B.; Wu, W. J. Lamellar composite membrane with acid-base pair anchored layer-by-layer structure towards highly enhanced conductivity and stability. J. Membr. Sci. 2020, 602, 117978.

    Article  Google Scholar 

  23. Kang, Y.; Xia, Y.; Wang, H. T.; Zhang, X. W. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 2019, 29, 1902014.

    Article  Google Scholar 

  24. Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267–6295.

    Article  CAS  Google Scholar 

  25. Rodríguez-San-Miguel D.; Montoro, C.; Zamora, F. Covalent organic framework nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2020, 49, 2291–2302.

    Article  Google Scholar 

  26. Nicks, J.; Boer, S. A.; White, N. G.; Foster, J. A. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks. Chem. Sci. 2021, 12, 3322–3327.

    Article  CAS  Google Scholar 

  27. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472.

    Article  CAS  Google Scholar 

  28. Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846–850.

    Article  CAS  Google Scholar 

  29. Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.

    Article  CAS  Google Scholar 

  30. Chi, C. L.; Wang, X. R.; Peng, Y. W.; Qian, Y. H.; Hu, Z. G.; Dong, J. Q.; Zhao, D. Facile preparation of graphene oxide membranes for gas separation. Chem. Mater. 2016, 28, 2921–2927.

    Article  CAS  Google Scholar 

  31. Ding, L.; Wei, Y. Y.; Li, L. B.; Zhang, T.; Wang, H. H.; Xue, J.; Ding L. X.; Wang, S. Q.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155.

    Article  Google Scholar 

  32. Wang, D.; Wang, Z. G.; Wang, L.; Hu, L.; Jin, J. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale 2015, 7, 17649–17652.

    Article  CAS  Google Scholar 

  33. Liang, H. Q.; Guo, Y.; Shi, Y. S.; Peng, X. S.; Liang, B.; Chen, B. L. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem., Int. Ed. 2020, 59, 7732–7737.

    Article  CAS  Google Scholar 

  34. Li, P. P.; Li, Z. Y.; Guo, Y.; Deng, Z.; Wang, X. B.; Ma, X.; Peng, X. S. Ag-DNA@ZIF-8 membrane: A proton conductive photoswitch. Appl. Mater. Today 2020, 20, 100761.

    Article  Google Scholar 

  35. Guo, Y.; Peng, X. S. Mass transport through metal organic framework membranes. Sci. China Mater. 2019, 62, 25–42.

    Article  Google Scholar 

  36. Guo, Y.; Jiang, Z. Q.; Ying, W.; Chen, L. P.; Liu, Y. Z.; Wang, X. B.; Jiang, Z. J.; Chen, B. L.; Peng, X. S. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv. Mater. 2018, 30, 1705155.

    Article  Google Scholar 

  37. Yang, F.; Xu, G.; Dou, Y. B.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J. R.; Chen, B. L. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2017, 2, 877–883.

    Article  CAS  Google Scholar 

  38. Presiado, I.; Lal, J.; Mamontov, E.; Kolesnikov, A. I.; Huppert, D. Fast proton hopping detection in ice Ih by quasi-elastic neutron scattering. J. Phys. Chem. C 2011, 115, 10245–10251.

    Article  CAS  Google Scholar 

  39. Jian, M. P.; Qiu, R. S.; Xia, Y.; Lu, J.; Chen, Y.; Gu, Q. F.; Liu, R. P.; Hu, C. Z.; Qu, J. H.; Wang, H. T. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 2020, 6, eaay3998.

    Article  CAS  Google Scholar 

  40. Howarth, A. J.; Liu, Y. Y; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    Article  CAS  Google Scholar 

  41. Tarokh, A.; Karan, K.; Ponnurangam, S. Atomistic MD study of Nafion dispersions: Role of solvent and counterion in the aggregate structure, ionic clustering, and acid dissociation. Macromolecules 2020, 53, 288–301.

    Article  CAS  Google Scholar 

  42. Welch, C.; Labouriau, A.; Hjelm, R.; Orler, B.; Johnston, C.; Kim, Y. S. Nafion in dilute solvent systems: Dispersion or solution? ACS Macro Lett. 2012, 1, 1403–1407.

    Article  CAS  Google Scholar 

  43. Lin, H. L.; Yu, T. L.; Huang, C. H.; Lin, T. L. Morphology study of Nafion membranes prepared by solutions casting. J. Polym. Sci. Part B:Polym. Phys. 2005, 43, 3044–3057.

    Article  CAS  Google Scholar 

  44. Lim, Y.; Lee, S.; Jang, H.; Hossain, M. A.; Gwak, G.; Ju, H.; Kim, D.; Kim, W. Sulfonated poly(ether sulfone) electrolytes structured with mesonaphthobifluorene graphene moiety for PEMFC. Int. J. Hydrog. Energy 2014, 39, 1532–1538.

    Article  CAS  Google Scholar 

  45. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  CAS  Google Scholar 

  46. Liu, Y. W.; Yang, X.; Miao, J.; Tang, Q.; Liu, S. M.; Shi, Z.; Liu, S. X. Polyoxometalate-functionalized metal-organic frameworks with improved water retention and uniform proton-conducting pathways in three orthogonal directions. Chem. Commun. 2014, 50, 10023–10026.

    Article  CAS  Google Scholar 

  47. Yuan, S.; Huang, L.; Huang, Z. H.; Sun, D.; Qin, J. S.; Feng, L.; Li, J. L.; Zou, X. D.; Cagin, T.; Zhou, H. C. Continuous variation of lattice dimensions and pore sizes in metal-organic frameworks. J. Am. Chem. Soc. 2020, 142, 4732–4738.

    Article  CAS  Google Scholar 

  48. Li, J.; Wang, J.; Wu, Z. Z.; Tao, S. S.; Jiang, D. L. Ultrafast and stable proton conduction in polybenzimidazole covalent organic frameworks via confinement and activation. Angew. Chem. 2021, 133, 13028–13033.

    Article  Google Scholar 

  49. Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 2009, 8, 831–836.

    Article  CAS  Google Scholar 

  50. Serre, C.; Bourrelly, S.; Vimont, A.; Ramsahye, N. A.; Maurin, G.; Llewellyn, P. L.; Daturi, M.; Filinchuk, Y.; Leynaud, O.; Barnes, P. et al. An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv. Mater. 2007, 19, 2246–2251.

    Article  CAS  Google Scholar 

  51. Wu, B.; Ge, L.; Lin, X. C.; Wu, L.; Luo, J. Y.; Xu, T. W. Immobilization of N-(3-aminopropyl)-imidazole through MOFs in proton conductive membrane for elevated temperature anhydrous applications. J. Membr. Sci. 2014, 458, 86–95.

    Article  CAS  Google Scholar 

  52. Liu, J. T.; Han, G.; Zhao, D. L.; Lu, K. J.; Gao, J.; Chung, T. S. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation. Sci. Adv. 2020, 6, eabb1110.

    Article  CAS  Google Scholar 

  53. Jheng, L. C.; Huang, C. Y.; Hsu, S. L. C. Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2013, 38, 1524–1534.

    Article  CAS  Google Scholar 

  54. Wolfart, F.; Hryniewicz, B. M.; Marchesi, L. F.; Orth, E. S.; Dubal, D. P.; Gómez-Romero, P.; Vidotti, M. Direct electrodeposition of imidazole modified poly(pyrrole) copolymers: Synthesis, characterization and supercapacitive properties. Electrochim. Acta 2017, 243, 260–269.

    Article  CAS  Google Scholar 

  55. Zhang, M. C.; Mao, Y. Y.; Liu, G. Z.; Liu, G. P.; Fan, Y. Q.; Jin, W. Q. Molecular bridges stabilize graphene oxide membranes in water. Angew. Chem., Int. Ed. 2020, 59, 1689–1695.

    Article  CAS  Google Scholar 

  56. Choi, B. G.; Hong, J.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Hammond, P. T.; Park, H. Innovative polymer nanocomposite electrolytes: Nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 2011, 5, 5167–5174.

    Article  CAS  Google Scholar 

  57. Lin, J. L.; Dang, J. C.; Zhou, G. L.; Wu, W. J.; Liu, Y. R.; Zhang, Y. F.; Wang, J. T. Sheet-dot-framework membrane towards efficient proton conduction and outstanding stability. J. Mater. Chem. A 2020, 8, 10822–10830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. U2004199), Excellent Youth Foundation of Henan Province (No. 202300410373), China Postdoctoral Science Foundation (Nos. 2021T140615 and 2020M672281), Natural Science Foundation of Henan Province (No. 212300410285), and Young Talent Support Project of Henan Province (No. 2021HYTP028). Center for advanced analysis and computational science, Zhengzhou University is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjia Wu or Jingtao Wang.

Electronic supplementary material

12274_2021_3925_MOESM1_ESM.pdf

Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gao, H., Wu, W. et al. Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction. Nano Res. 15, 3195–3203 (2022). https://doi.org/10.1007/s12274-021-3925-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3925-7

Keywords

Navigation