Skip to main content
Log in

Mass transport through metal organic framework membranes

金属有机框架物薄膜中的传质

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs), which are composed of metal nodes and organic ligands, possess crystal phase, ordered well-defined porous structure and large surface area. Since first reported in 1990, MOFs have attracted extensive attention and the fabrication of MOF membranes has expanded their applications and endowed them with a bright future in various fields. The mass transportation process through MOF membranes is vital during their diverse applications. In this review, the strategies of preparing continuous and well-intergrown MOF membranes are presented firstly. The selective transportation processes of gas molecules, liquid molecules and ions through MOF membranes are discussed in detail, respectively. The effects of pore entrance size, interaction, functional groups decorating on the ligands and guest components on mass transportation have been summarized in this review as well. In addition, MOF membranes with selective transportation performance demonstrate potential in separation, catalysis, energy transformation and storage devices, and so on.

摘要

金属有机框架物(MOF)是由金属节点和有机配体依靠配位键结合组装而成的晶体材料, 具有规则的孔道结构和巨大的比表面积. 自 1990被提出以来, MOF便引起了广泛关注; 同时MOF薄膜的成功制备扩大了其应用范围, 使其应用于诸多领域. 在MOF薄膜的应用中, 跨 膜传质过程至关重要. 本文首先综述了近年来MOF薄膜材料的制备方法, 接着分别详细讨论了气体分子、液体分子和离子的选择性跨膜 传输. 在传质过程中, MOF的窗口尺寸、配体上修饰的功能基团以及孔道中的客体分子均会对离子传输产生影响. 具有选择性传输特性的 MOF薄膜在分离、催化和能量存储和转化领域均有潜在应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191

    Google Scholar 

  2. Chui SSY, Lo SMF, Charmant JPH, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283: 1148–1150

    Google Scholar 

  3. Humphrey SM, Chang JS, Jhung SH, et al. Porous cobalt(II)–organic frameworks with corrugated walls: structurally robust gas-sorption materials. Angew Chem Int Ed, 2007, 46: 272–275

    Google Scholar 

  4. Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII (CN)4] and CuI[4,4′,4″,4‴-tetracyanotetraphenylmethane]BF4∙xC6 H5NO2. J Am Chem Soc, 1990, 112: 1546–1554

    Google Scholar 

  5. Li H, Eddaoudi M, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276–279

    Google Scholar 

  6. Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate- based solid with unusually large pore volumes and surface area. Science, 2005, 309: 2040–2042

    Google Scholar 

  7. Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008, 130: 13850–13851

    Google Scholar 

  8. Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nat Chem, 2009, 1: 695–704

    Google Scholar 

  9. Zhao Y, Liu J, Horn M, et al. Recent advancements in metal organic framework based electrodes for supercapacitors. Sci China Mater, 2018, 61: 159–184

    Google Scholar 

  10. Duan C, Li F, Xiao J, et al. Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield. Sci China Mater, 2017, 60: 1205–1214

    Google Scholar 

  11. Huang ZD, Zhang TT, Lu H, et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries. Sci China Mater, 2018, doi: 10.1007/s40843-017-9225-5

    Google Scholar 

  12. Dou Z, Cai J, Cui Y, et al. Preparation and gas separation properties of metal-organic framework membranes. Z Anorg Allg Chem, 2015, 641: 792–796

    Google Scholar 

  13. Liu J, Canfield N, Liu W. Preparation and characterization of a hydrophobic metal–organic framework membrane supported on a thin porous metal sheet. Ind Eng Chem Res, 2016, 55: 3823–3832

    Google Scholar 

  14. Yang Q, Wiersum AD, Llewellyn PL, et al. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem Commun, 2011, 47: 9603–9605

    Google Scholar 

  15. Xiang Z, Fang C, Leng S, et al. An amino group functionalized metal–organic framework as a luminescent probe for highly selective sensing of Fe3+ ions. J Mater Chem A, 2014, 2: 7662–7665

    Google Scholar 

  16. Hendon CH, Tiana D, Fontecave M, et al. Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization. J Am Chem Soc, 2013, 135: 10942–10945

    Google Scholar 

  17. Wang B, Yang Q, Guo C, et al. Stable Zr(IV)-based metal–organic frameworks with predesigned functionalized ligands for highly selective detection of Fe(III) ions in water. ACS Appl Mater Interfaces, 2017, 9: 10286–10295

    Google Scholar 

  18. Cohen SM. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev, 2012, 112: 970–1000

    Google Scholar 

  19. Nguyen HGT, Weston MH, Sarjeant AA, et al. Design, synthesis, characterization, and catalytic properties of a large-pore metalorganic framework possessing single-site vanadyl(monocatecholate) moieties. Cryst Growth Des, 2013, 13: 3528–3534

    Google Scholar 

  20. Guo XG, Qiu S, Chen X, et al. Postsynthesis modification of a metallosalen-containing metal–organic framework for selective Th(IV)/Ln(III) separation. Inorg Chem, 2017, 56: 12357–12361

    Google Scholar 

  21. González Miera G, Bermejo Gómez A, Chupas PJ, et al. Topological transformation of a metal–organic framework triggered by ligand exchange. Inorg Chem, 2017, 56: 4576–4583

    Google Scholar 

  22. Gadipelli S, Guo Z. Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake. Chem Mater, 2014, 26: 6333–6338

    Google Scholar 

  23. Vermeulen NA, Karagiaridi O, Sarjeant AA, et al. Aromatizing olefin metathesis by ligand isolation inside a metal–organic framework. J Am Chem Soc, 2013, 135: 14916–14919

    Google Scholar 

  24. Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev, 2017, 46: 4614–4630

    Google Scholar 

  25. Zhang W, Lu G, Cui C, et al. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noblemetal nanoparticles. Adv Mater, 2014, 26: 4056–4060

    Google Scholar 

  26. Li B, Zhang Y, Ma D, et al. Metal-cation-directed de Novo assembly of a functionalized guest molecule in the nanospace of a metal–organic framework. J Am Chem Soc, 2014, 136: 1202–1205

    Google Scholar 

  27. Fan CB, Liu ZQ, Gong LL, et al. Photoswitching adsorption selectivity in a diarylethene–azobenzene MOF. Chem Commun, 2017, 53: 763–766

    Google Scholar 

  28. Zhao M, Yuan K, Wang Y, et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature, 2016, 539: 76–80

    Google Scholar 

  29. Yang Q, Xu Q, Yu SH, et al. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew Chem Int Ed, 2016, 55: 3685–3689

    Google Scholar 

  30. Liang K, Ricco R, Doherty CM, et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun, 2015, 6: 7240

    Google Scholar 

  31. Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev, 2012, 112: 869–932

    Google Scholar 

  32. Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci USA, 2009, 106: 20637–20640

    Google Scholar 

  33. Xue DX, Belmabkhout Y, Shekhah O, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc, 2015, 137: 5034–5040

    Google Scholar 

  34. Luo F, Yan C, Dang L, et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J Am Chem Soc, 2016, 138: 5678–5684

    Google Scholar 

  35. Chang G, Huang M, Su Y, et al. Immobilization of Ag(I) into a metal–organic framework with–SO3H sites for highly selective olefin–paraffin separation at room temperature. Chem Commun, 2015, 51: 2859–2862

    Google Scholar 

  36. Xiang SC, Zhang Z, Zhao CG, et al. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nat Commun, 2011, 2: 204

    Google Scholar 

  37. Sun Y, Yang F, Wei Q, et al. Oriented nano-microstructure-assisted controllable fabrication of metal-organic framework membranes on nickel foam. Adv Mater, 2016, 28: 2374–2381

    Google Scholar 

  38. Qin X, Sun Y, Wang N, et al. Nanostructure array assisted aggregation- based growth of a Co-MOF-74 membrane on a Nifoam substrate for gas separation. RSC Adv, 2016, 6: 94177–94183

    Google Scholar 

  39. Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal–organic frameworks. Chem Rev, 2012, 112: 724–781

    Google Scholar 

  40. Wu H, Gong Q, Olson DH, et al. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chem Rev, 2012, 112: 836–868

    Google Scholar 

  41. Furukawa H, Gándara F, Zhang YB, et al. Water adsorption in porous metal–organic frameworks and related materials. J Am Chem Soc, 2014, 136: 4369–4381

    Google Scholar 

  42. Zhang Z, Yao ZZ, Xiang S, et al. Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ Sci, 2014, 7: 2868–2899

    Google Scholar 

  43. Cui Y, Yue Y, Qian G, et al. Luminescent functional metal–organic frameworks. Chem Rev, 2012, 112: 1126–1162

    Google Scholar 

  44. Wang C, Zhang T, Lin W. Rational synthesis of noncentrosymmetric metal–organic frameworks for second-order nonlinear optics. Chem Rev, 2012, 112: 1084–1104

    Google Scholar 

  45. Yu J, Cui Y, Xu H, et al. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photonpumped lasing. Nat Commun, 2013, 4: 2719

    Google Scholar 

  46. Rao X, Song T, Gao J, et al. A highly sensitive mixed lanthanide metal–organic framework self-calibrated luminescent thermometer. J Am Chem Soc, 2013, 135: 15559–15564

    Google Scholar 

  47. Cui Y, Song R, Yu J, et al. Dual-emitting MOF⊃dye composite for ratiometric temperature sensing. Adv Mater, 2015, 27: 1420–1425

    Google Scholar 

  48. Wang C, Lin W. Diffusion-controlled luminescence quenching in metal−organic frameworks. J Am Chem Soc, 2011, 133: 4232–4235

    Google Scholar 

  49. Yin W, Tao C, Wang F, et al. Tuning optical properties of MOFbased thin films by changing the ligands of MOFs. Sci China Mater, 2018, 61: 391–400

    Google Scholar 

  50. Ye JW, Zhou X, Wang Y, et al. Room-temperature sintered metalorganic framework nanocrystals: A new type of optical ceramics. Sci China Mater, 2018, 61: 424–428

    Google Scholar 

  51. Yoon M, Srirambalaji R, Kim K. Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem Rev, 2012, 112: 1196–1231

    Google Scholar 

  52. Ji P, Song Y, Drake T, et al. Titanium(III)-oxo clusters in a metal–organic framework support single-site Co(II)-hydride catalysts for arene hydrogenation. J Am Chem Soc, 2018, 140: 433–440

    Google Scholar 

  53. An B, Zeng L, Jia M, et al. Molecular iridium complexes in metal–organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J Am Chem Soc, 2017, 139: 17747–17750

    Google Scholar 

  54. Wu CD, Zhao M. Incorporation of molecular catalysts in metalorganic frameworks for highly efficient heterogeneous catalysis. Adv Mater, 2017, 29: 1605446

    Google Scholar 

  55. Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem, 2017, 10: 1100–1109

    Google Scholar 

  56. An B, Zhang J, Cheng K, et al. Confinement of ultrasmall Cu/ ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc, 2017, 139: 3834–3840

    Google Scholar 

  57. Kreno LE, Leong K, Farha OK, et al. Metal–organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105–1125

    Google Scholar 

  58. Campbell MG, Sheberla D, Liu SF, et al. Cu3 (hexaiminotriphenylene) 2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew Chem Int Ed, 2015, 54: 4349–4352

    Google Scholar 

  59. Mallick A, Garai B, Addicoat MA, et al. Solid state organic amine detection in a photochromic porous metal organic framework. Chem Sci, 2015, 6: 1420–1425

    Google Scholar 

  60. Xu XY, Yan B. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Appl Mater Interfaces, 2015, 7: 721–729

    Google Scholar 

  61. Dong XY, Wang R, Wang JZ, et al. Highly selective Fe3+ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. J Mater Chem A, 2015, 3: 641–647

    Google Scholar 

  62. Cao LH, Shi F, Zhang WM, et al. Selective sensing of Fe3+ and Al3+ ions and detection of 2,4,6-trinitrophenol by a water-stable terbium- based metal-organic framework. Chem Eur J, 2015, 21: 15705–15712

    Google Scholar 

  63. Zhou X, Cheng J, Li L, et al. A europium(III) metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ ions. Sci China Mater, 2018, 61: 752–757

    Google Scholar 

  64. Bétard A, Fischer RA. Metal–organic framework thin films: from fundamentals to applications.. Chem Rev, 2012, 112: 1055–1083

    Google Scholar 

  65. Li WJ, Tu M, Cao R, et al. Metal-organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives. J Mater Chem A, 2016, 4: 12356–12369

    Google Scholar 

  66. Zacher D, Shekhah O, Wöll C, et al. Thin films of metal–organic frameworks. Chem Soc Rev, 2009, 38: 1418–1429

    Google Scholar 

  67. Denny MS, Moreton JC, Benz L, et al. Metal–organic frameworks for membrane-based separations. Nat Rev Mater, 2016, 1: 16078

    Google Scholar 

  68. Li X, Liu Y, Wang J, et al. Metal–organic frameworks based membranes for liquid separation. Chem Soc Rev, 2017, 46: 7124–7144

    Google Scholar 

  69. Tanh Jeazet HB, Staudt C, Janiak C. Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans, 2012, 41: 14003–14027

    Google Scholar 

  70. Denny Jr. MS, Cohen SM. In situ modification of metal-organic frameworks in mixed-matrix membranes. Angew Chem Int Ed, 2015, 54: 9029–9032

    Google Scholar 

  71. Castarlenas S, Téllez C, Coronas J. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J Membrane Sci, 2017, 526: 205–211

    Google Scholar 

  72. Ghalei B, Sakurai K, Kinoshita Y, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy, 2017, 2: 17086

    Google Scholar 

  73. Benzaqui M, Pillai RS, Sabetghadam A, et al. Revisiting the aluminum trimesate-based MOF (MIL-96): From structure determination to the processing of mixed matrix membranes for CO2 capture. Chem Mater, 2017, 29: 10326–10338

    Google Scholar 

  74. Sorribas S, Kudasheva A, Almendro E, et al. Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1. Chem Eng Sci, 2015, 124: 37–44

    Google Scholar 

  75. Wee LH, Li Y, Zhang K, et al. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: mechanistic insights by Monte Carlo simulation and FTIR spectroscopy. Adv Funct Mater, 2015, 25: 516–525

    Google Scholar 

  76. Lin R, Ge L, Diao H, et al. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. J Mater Chem A, 2016, 4: 6084–6090

    Google Scholar 

  77. Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications. Energy Environ Sci, 2012, 5: 9269–9290

    Google Scholar 

  78. Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat Commun, 2017, 8: 14628

    Google Scholar 

  79. Guo Y, Jiang Z, Ying W, et al. A DNA-threaded ZIF-8 membrane with high proton conductivity and low methanol permeability. Adv Mater, 2018, 30: 1705155

    Google Scholar 

  80. Liu J, Wöll C. Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chem Soc Rev, 2017, 46: 5730–5770

    Google Scholar 

  81. Otsubo K, Haraguchi T, Kitagawa H. Nanoscale crystalline architectures of Hofmann-type metal–organic frameworks. Coord Chem Rev, 2017, 346: 123–138

    Google Scholar 

  82. Liu B, Fischer RA. Liquid-phase epitaxy of metal organic framework thin films. Sci China Chem, 2011, 54: 1851–1866

    Google Scholar 

  83. Zhuang JL, Terfort A, Wöll C. Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coord Chem Rev, 2016, 307: 391–424

    Google Scholar 

  84. Rangnekar N, Mittal N, Elyassi B, et al. Zeolite membranes–a review and comparison with MOFs. Chem Soc Rev, 2015, 44: 7128–7154

    Google Scholar 

  85. Li W, Zhang Y, Li Q, et al. Metal−organic framework composite membranes: Synthesis and separation applications. Chem Eng Sci, 2015, 135: 232–257

    Google Scholar 

  86. Rubio-Martinez M, Avci-Camur C, Thornton AW, et al. New synthetic routes towards MOF production at scale. Chem Soc Rev, 2017, 46: 3453–3480

    Google Scholar 

  87. Ren J, Dyosiba X, Musyoka NM, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord Chem Rev, 2017, 352: 187–219

    Google Scholar 

  88. Adatoz E, Avci AK, Keskin S. Opportunities and challenges of MOF-based membranes in gas separations. Separation Purification Tech, 2015, 152: 207–237

    Google Scholar 

  89. Hermes S, Schröder F, Chelmowski R, et al. Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J Am Chem Soc, 2005, 127: 13744–13745

    Google Scholar 

  90. Yoo Y, Lai Z, Jeong HK. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous Mesoporous Mater, 2009, 123: 100–106

    Google Scholar 

  91. Qiu S, Xue M, Zhu G. Metal–organic framework membranes: from synthesis to separation application. Chem Soc Rev, 2014, 43: 6116–6140

    Google Scholar 

  92. Liu X, Wang C, Wang B, et al. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Adv Funct Mater, 2017, 27: 1604311

    Google Scholar 

  93. Zhu Y, Gupta KM, Liu Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination, 2016, 385: 75–82

    Google Scholar 

  94. Huang Y, Liu D, Liu Z, et al. Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation. Ind Eng Chem Res, 2016, 55: 7164–7170

    Google Scholar 

  95. Eum K, Rownaghi A, Choi D, et al. Fluidic processing of highperformance ZIF-8 membranes on polymeric hollow fibers: mechanistic insights and microstructure control. Adv Funct Mater, 2016, 26: 5011–5018

    Google Scholar 

  96. Brown AJ, Brunelli NA, Eum K, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345: 72–75

    Google Scholar 

  97. Cacho-Bailo F, Etxeberría-Benavides M, David O, et al. Structural contraction of zeolitic imidazolate frameworks: membrane application on porous metallic hollow fibers for gas separation. ACS Appl Mater Interfaces, 2017, 9: 20787–20796

    Google Scholar 

  98. Kong L, Zhang X, Liu H, et al. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer. J Membrane Sci, 2015, 490: 354–363

    Google Scholar 

  99. Li Q, Liu G, Huang K, et al. Preparation and characterization of Ni2(mal)2(bpy) homochiral MOF membrane. Asia-Pac J Chem Eng, 2016, 11: 60–69

    Google Scholar 

  100. Kasik A, Dong X, Lin YS. Synthesis and stability of zeolitic imidazolate framework-68 membranes. Microporous Mesoporous Mater, 2015, 204: 99–105

    Google Scholar 

  101. Knebel A, Friebe S, Bigall NC, et al. Comparative study of MIL-96 (Al) as continuous metal–organic frameworks layer and mixedmatrix membrane. ACS Appl Mater Interfaces, 2016, 8: 7536–7544

    Google Scholar 

  102. Kasik A, James J, Lin YS. Synthesis of ZIF-68 membrane on a ZnO modified α-alumina support by a modified reactive seeding method. Ind Eng Chem Res, 2016, 55: 2831–2839

    Google Scholar 

  103. Mao Y, Cao W, Li J, et al. Enhanced gas separation through wellintergrown MOF membranes: seed morphology and crystal growth effects. J Mater Chem A, 2013, 1: 11711–11716

    Google Scholar 

  104. Hu P, Yang Y, Mao Y, et al. Room temperature synthesis of ZIF-8 membranes from seeds anchored in gelatin films for gas separation. CrystEngComm, 2015, 17: 1576–1582

    Google Scholar 

  105. Mao Y, Cao W, Li J, et al. HKUST-1 membranes anchored on porous substrate by hetero MIL-110 nanorod array seeds. Chem Eur J, 2013, 19: 11883–11886

    Google Scholar 

  106. Ang H, Hong L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl Mater Interfaces, 2017, 9: 28079–28088

    Google Scholar 

  107. Peng Y, Li Y, Ban Y, et al. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew Chem Int Ed, 2017, 56: 9757–9761

    Google Scholar 

  108. Mao Y, Chen D, Hu P, et al. Hierarchical mesoporous metalorganic frameworks for enhanced CO2 capture. Chem Eur J, 2015, 21: 15127–15132

    Google Scholar 

  109. Mao Y, Li J, Cao W, et al. Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation. ACS Appl Mater Interfaces, 2014, 6: 4473–4479

    Google Scholar 

  110. Mao Y, Su B, Cao W, et al. Specific oriented metal–organic framework membranes and their facet-tuned separation performance. ACS Appl Mater Interfaces, 2014, 6: 15676–15685

    Google Scholar 

  111. Mao Y, shi L, Huang H, et al. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation. Chem Commun, 2013, 49: 5666–5668

    Google Scholar 

  112. Guo Y, Mao Y, Hu P, et al. Self-confined synthesis of HKUST-1 membranes from CuO nanosheets at room temperature. ChemistrySelect, 2016, 1: 108–113

    Google Scholar 

  113. Guo Y, Wang X, Hu P, et al. ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules. Appl Mater Today, 2016, 5: 103–110

    Google Scholar 

  114. Li J, Cao W, Mao Y, et al. Zinc hydroxide nanostrands: unique precursors for synthesis of ZIF-8 thin membranes exhibiting high size-sieving ability for gas separation. CrystEngComm, 2014, 16: 9788–9791

    Google Scholar 

  115. Mao Y, Li J, Cao W, et al. General incorporation of diverse components inside metal-organic framework thin films at room temperature. Nat Commun, 2014, 5: 5532

    Google Scholar 

  116. Guo Y, Ying Y, Mao Y, et al. Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angew Chem Int Ed, 2016, 55: 15120–15124

    Google Scholar 

  117. Kang Z, Fan L, Sun D. Recent advances and challenges of metal–organic framework membranes for gas separation. J Mater Chem A, 2017, 5: 10073–10091

    Google Scholar 

  118. Hurrle S, Friebe S, Wohlgemuth J, et al. Sprayable, large-area metal-organic framework films and membranes of varying thickness. Chem Eur J, 2017, 23: 2294–2298

    Google Scholar 

  119. Li W, Zhang Y, Zhang C, et al. Transformation of metal-organic frameworks for molecular sieving membranes. Nat Commun, 2016, 7: 11315

    Google Scholar 

  120. Cacho-Bailo F, Catalán-Aguirre S, Etxeberría-Benavides M, et al. Metal-organic framework membranes on the inner-side of a polymeric hollow fiber by microfluidic synthesis. J Membrane Sci, 2015, 476: 277–285

    Google Scholar 

  121. Li W, Su P, Li Z, et al. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat Commun, 2017, 8: 406

    Google Scholar 

  122. Zhu Y, Liu Q, Caro J, et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis. Separation Purification Tech, 2015, 146: 68–74

    Google Scholar 

  123. Eum K, Ma C, Rownaghi A, et al. ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: efficient propylene separation at elevated pressures. ACS Appl Mater Interfaces, 2016, 8: 25337–25342

    Google Scholar 

  124. Hayashi J, Mizuta H, Yamamoto M, et al. Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA−pp’ODA polyimide membrane. Ind Eng Chem Res, 1996, 35: 4176–4181

    Google Scholar 

  125. Knebel A, Geppert B, Volgmann K, et al. Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358: 347–351

    Google Scholar 

  126. Friebe S, Geppert B, Steinbach F, et al. Metal–organic framework UiO-66 layer: a highly oriented membrane with good selectivity and hydrogen permeance. ACS Appl Mater Interfaces, 2017, 9: 12878–12885

    Google Scholar 

  127. Müller K, Knebel A, Zhao F, et al. Switching thin films of azobenzene- containing metal-organic frameworks with visible light. Chem Eur J, 2017, 23: 5434–5438

    Google Scholar 

  128. Knebel A, Sundermann L, Mohmeyer A, et al. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem Mater, 2017, 29: 3111–3117

    Google Scholar 

  129. Gao Z, Li L, Li H, et al. A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation. J Cent South Univ, 2017, 24: 1727–1735

    Google Scholar 

  130. Chen Y, Wang B, Zhang S, et al. Fabrication of Cu-BTC metal organic frameworks on PVDF hollow fiber membrane for gas separation via multiple reactions. Fibers Polym, 2015, 16: 2130–2134

    Google Scholar 

  131. Perea-Cachero A, Calvo P, Romero E, et al. Enhancement of growth of MOF MIL-68(Al) thin films on porous alumina tubes using different linking agents. Eur J Inorg Chem, 2017, 2017: 2532–2540

    Google Scholar 

  132. Campbell J, Tokay B. Controlling the size and shape of Mg-MOF- 74 crystals to optimise film synthesis on alumina substrates. Microporous Mesoporous Mater, 2017, 251: 190–199

    Google Scholar 

  133. Wang N, Mundstock A, Liu Y, et al. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem Eng Sci, 2015, 124: 27–36

    Google Scholar 

  134. Qiao Z, Wang N, Jiang J, et al. Design of amine-functionalized metal–organic frameworks for CO2 separation: the more amine, the better? Chem Commun, 2016, 52: 974–977

    Google Scholar 

  135. Jang E, Kim E, Kim H, et al. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability. J Membrane Sci, 2017, 540: 430–439

    Google Scholar 

  136. Isaeva VI, Barkova MI, Kustov LM, et al. In situ synthesis of novel ZIF-8 membranes on polymeric and inorganic supports. J Mater Chem A, 2015, 3: 7469–7476

    Google Scholar 

  137. Li W, Su P, Zhang G, et al. Preparation of continuous NH2–MIL- 53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification. J Membrane Sci, 2015, 495: 384–391

    Google Scholar 

  138. Jin H, Wollbrink A, Yao R, et al. A novel CAU-10-H MOF membrane for hydrogen separation under hydrothermal conditions. J Membrane Sci, 2016, 513: 40–46

    Google Scholar 

  139. Rui Z, James JB, Kasik A, et al. Metal-organic framework membrane process for high purity CO2 production. AIChE J, 2016, 62: 3836–3841

    Google Scholar 

  140. Keskin S, Sholl DS. Assessment of a metal−organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5. Ind Eng Chem Res, 2009, 48: 914–922

    Google Scholar 

  141. Hu Y, Wu Y, Devendran C, et al. Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacremimetic metal–organic framework molecular sieving membrane. J Mater Chem A, 2017, 5: 16255–16262

    Google Scholar 

  142. Kang Z, Fan L, Wang S, et al. In situ confinement of free linkers within a stable MOF membrane for highly improved gas separation properties. CrystEngComm, 2017, 19: 1601–1606

    Google Scholar 

  143. Miyamoto M, Hori K, Goshima T, et al. An organoselective zirconium- based metal-organic-framework UiO-66 membrane for pervaporation. Eur J Inorg Chem, 2017, 2094–2099

    Google Scholar 

  144. Wang S, Kang Z, Xu B, et al. Wettability switchable metal-organic framework membranes for pervaporation of water/ethanol mixtures. Inorg Chem Commun, 2017, 82: 64–67

    Google Scholar 

  145. Jiang Y, Ryu GH, Joo SH, et al. Porous two-dimensional monolayer metal–organic framework material and its use for the sizeselective separation of nanoparticles. ACS Appl Mater Interfaces, 2017, 9: 28107–28116

    Google Scholar 

  146. Li Y, Wee LH, Martens JA, et al. Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance. J Membrane Sci, 2017, 523: 561–566

    Google Scholar 

  147. Liu X, Demir NK, Wu Z, et al. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J Am Chem Soc, 2015, 137: 6999–7002

    Google Scholar 

  148. Ramaswamy P, Wong NE, Shimizu GKH. MOFs as proton conductors–challenges and opportunities. Chem Soc Rev, 2014, 43: 5913–5932

    Google Scholar 

  149. Tominaka S, Cheetham AK. Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv, 2014, 4: 54382–54387

    Google Scholar 

  150. Borges DD, Devautour-Vinot S, Jobic H, et al. Proton transport in a highly conductive porous zirconium-based metal-organic framework: molecular insight. Angew Chem Int Ed, 2016, 55: 3919–3924

    Google Scholar 

  151. Phang WJ, Jo H, Lee WR, et al. Superprotonic conductivity of a UiO-66 framework functionalized with sulfonic acid groups by facile postsynthetic oxidation. Angew Chem Int Ed, 2015, 54: 5142–5146

    Google Scholar 

  152. Shen Y, Yang XF, Zhu HB, et al. A unique 3D metal–organic framework based on a 12-connected pentanuclear Cd(II) cluster exhibiting proton conduction. Dalton Trans, 2015, 44: 14741–14746

    Google Scholar 

  153. Dong XY, Wang R, Li JB, et al. A tetranuclear Cu4(μ3-OH)2-based metal–organic framework (MOF) with sulfonate–carboxylate ligands for proton conduction. Chem Commun, 2013, 49: 10590–10592

    Google Scholar 

  154. Zhu M, Hao ZM, Song XZ, et al. A new type of double-chain based 3D lanthanide(III) metal–organic framework demonstrating proton conduction and tunable emission. Chem Commun, 2014, 50: 1912–1914

    Google Scholar 

  155. Yang F, Xu G, Dou Y, et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat Energy, 2017, 2: 877–883

    Google Scholar 

  156. Duerinck T, Denayer JFM. Metal-organic frameworks as stationary phases for chiral chromatographic and membrane separations. Chem Eng Sci, 2015, 124: 179–187

    Google Scholar 

Download references

Acknowledgements

This work was supported by Key Program of National Natural Science Foundation of China (51632008), Zhejiang Provincial Natural Science Foundation (LD18E020001) and the National Natural Science Foundation of China (21671171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsheng Peng  (彭新生).

Additional information

Yi Guo currently is a PhD candidate at the School of Materials Science and Engineering, Zhejiang University. His research interest mainly focuses on the design and synthesis of MOF membranes with ionic conductivity and their applications for energy transformation and storage.

Xinsheng Peng received his PhD in 2003 at the Institute of Solid State Physics, Chinese Academy of Sciences. He became a full professor at the School of Materials Science and Engineering, Zhejiang University in 2010. His research interest focuses on the design and synthesis of functional membranes and controlled mass transportation in energy and environmental science.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Peng, X. Mass transport through metal organic framework membranes. Sci. China Mater. 62, 25–42 (2019). https://doi.org/10.1007/s40843-018-9258-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9258-4

Keywords

Navigation