Xu, H. B.; Fei, B.; Cai, G. H.; Ha, Y.; Liu, J.; Jia, H. X.; Zhang, J. C.; Liu, M.; Wu, R. B. Boronization-induced ultrathin 2D nanosheets with abundant crystalline-amorphous phase boundary supported on nickel foam toward efficient water splitting. Adv. Energy Mater. 2020, 10, 1902714.
CAS
Google Scholar
Wang, X. P.; Wu, H. J.; Xi, S. B.; Lee, W. S. V.; Zhang, J.; Wu, Z. H.; Wang, J. O.; Hu, T. D.; Liu, L. M.; Han, Y. et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy Environ. Sci. 2020, 13, 229–237.
CAS
Google Scholar
Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.
CAS
Google Scholar
Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.
CAS
Google Scholar
Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3794-0.
Shi, Q. R.; Zhu, C. Z.; Du, D.; Lin, Y. H. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chem. Soc. Rev. 2019, 48, 3181–3192.
CAS
Google Scholar
Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.
CAS
Google Scholar
Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.
CAS
Google Scholar
Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.
CAS
Google Scholar
Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.
CAS
Google Scholar
Li, S.; Xi, C.; Jin, Y. Z.; Wu, D. Y.; Wang, J. Q.; Liu, T.; Wang, H. B.; Dong, C. K.; Liu, H.; Kulinich, S. A. et al. Ir-O-V catalytic group in Ir-doped NiV(OH)2 for overall water splitting. ACS Energy Lett. 2019, 4, 1823–1829.
CAS
Google Scholar
Yeo, B. S. Oxygen evolution by stabilized single Ru atoms. Nat. Catal. 2019, 2, 284–285.
CAS
Google Scholar
Zhu, R. M.; Zhang, Y.; Ding, J. W.; Pang, H. Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Sci. China Mater. 2021, 64, 1556–1562.
CAS
Google Scholar
Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.
CAS
Google Scholar
Li, X.; Kou, Z. K.; Xi, S. B.; Zang, W. J.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230.
CAS
Google Scholar
Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.
Google Scholar
Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.
CAS
Google Scholar
Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346–3354.
CAS
Google Scholar
Xu, Z. J. Transition metal oxides for water oxidation: All about oxyhydroxides? Sci. China Mater. 2020, 63, 3–7.
CAS
Google Scholar
Duan, Y.; Sun, S. N.; Sun, Y. M.; Xi, S. B.; Chi, X.; Zhang, Q. H.; Ren, X.; Wang, J. X.; Ong, S. J. H.; Du, Y. H. et al. Mastering surface reconstruction of metastable spinel oxides for better water oxidation. Adv. Mater. 2019, 31, 1807898.
Google Scholar
Li, Y. Y.; Du, X. C.; Huang, J. W.; Wu, C. Y.; Sun, Y. H.; Zou, G. F.; Yang, C. T.; Xiong, J. Recent progress on surface reconstruction of earth-abundant electrocatalysts for water oxidation. Small 2019, 15, 1901980.
Google Scholar
Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461–466.
CAS
Google Scholar
Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Cataly. 2019, 2, 763–772.
CAS
Google Scholar
Wang, L.; Zhou, Q.; Pu, Z. H.; Zhang, Q.; Mu, X. Q.; Jing, H. Y.; Liu, S. L.; Chen, C. Y.; Mu, S. C. Surface reconstruction engineering of cobalt phosphides by Ru inducement to form hollow Ru-RuPx-CoxP pre-electrocatalysts with accelerated oxygen evolution reaction. Nano Energy 2018, 53, 270–276.
CAS
Google Scholar
Huang, J. W.; Li, Y. Y.; Zhang, Y. D.; Rao, G. F.; Wu, C. Y.; Hu, Y.; Wang, X. F.; Lu, R. F.; Li, Y. R.; Xiong, J. Identification of key reversible intermediates in self-reconstructed nickel-based hybrid electrocatalysts for oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 17458–17464.
CAS
Google Scholar
Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.
Google Scholar
Kou, T. Y.; Wang, S. W.; Hauser, J. L.; Chen, M. P.; Oliver, S. R. J.; Ye, Y. F.; Guo, J. H.; Li, Y. Ni foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett. 2019, 4, 622–628.
CAS
Google Scholar
Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.
CAS
Google Scholar
Zhang, Z. B.; Zhu, Y. L.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energy Mater. 2017, 7, 1700242.
Google Scholar
Chen, P. Z.; Zhou, T. P.; Wang, S. B.; Zhang, N.; Tong, Y.; Ju, H. X.; Chu, W. S.; Wu, C. Z.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt-based materials to achieve enhanced oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 15471–15475.
CAS
Google Scholar
Zhang, B. W.; Hu, S. Turning Ni-based hydroxide into an efficient hydrogen evolution electrocatalyst by fluoride incorporation. Electrochem. Commun. 2018, 86, 108–112.
CAS
Google Scholar
Li, R. Q.; Liu, Q.; Zhou, Y. N.; Lu, M. J.; Hou, J. L.; Qu, K. G.; Zhu, Y. C.; Fontaine, O. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2021, 9, 4159–4166.
CAS
Google Scholar
Shi, P.; Cheng, X. D.; Lyu, S. L. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. Chin. Chem. Lett. 2021, 32, 1210–1214.
CAS
Google Scholar
Mu, C.; Butenko, D. S.; Odynets, I. V.; Zatovsky, I. V.; Li, J. Z.; Han, W.; Klyui, N. I. Na4Ni3P4O15-Ni(OH)2 core-shell nanoparticles as hybrid electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. Dalton Trans. 2020, 49, 8226–8237.
CAS
Google Scholar
Wang, Y. Q.; Tao, S.; Lin, H.; Han, S. B.; Zhong, W. H.; Xie, Y. S.; Hu, J.; Yang, S. H. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. RSC Adv. 2020, 10, 33475–33482.
CAS
Google Scholar
Xu, Q. C.; Chu, M. S.; Liu, M. M.; Zhang, J. H.; Jiang, H.; Li, C. Z. Fluorine-triggered surface reconstruction of Ni3S2 electrocatalysts towards enhanced water oxidation. Chem. Eng. J. 2021, 411, 128488.
CAS
Google Scholar
Li, S. L.; Li, Z. C.; Ma, R. G.; Gao, C. L.; Liu, L. L.; Hu, L. P.; Zhu, J. L.; Sun, T. M.; Tang, Y. F.; Liu, D. M. et al. A glass-ceramic with accelerated surface reconstruction toward the efficient oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 3773–3780.
CAS
Google Scholar
Ren, X.; Wei, C.; Sun, Y. M.; Liu, X. Z.; Meng, F. Q.; Meng, X. X.; Sun, S. N.; Xi, S. B.; Du, Y. H.; Bi, Z. F. et al. Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 2020, 32, 2001292.
CAS
Google Scholar
Wang, Y.; Zhu, Y. L.; Zhao, S. L.; She, S. X.; Zhang, F. F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L. H.; Mao, H. Y. et al. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter 2020, 3, 2124–2137.
Google Scholar
Sun, Y.; Li, R.; Chen, X. X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K. K.; Wang, L.; Zhang, Z.; Liao, Q. L. et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 2021, 11, 2003755.
CAS
Google Scholar
Xu, C. Y.; Lu, W.; Yan, L.; Ning, J. Q.; Zheng, C. C.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. Hierarchical molybdenum-doped cobaltous hydroxide nanotubes assembled by cross-linked porous nanosheets with efficient electronic modulation toward overall water splitting. J. Colloid Interface Sci. 2020, 562, 400–408.
CAS
Google Scholar
Tong, H.; Meng, Q.; Liu, J.; Li, T. T.; Gong, D. X.; Xiao, J. P.; Shen, L. F.; Zhang, T. F.; Bing, D.; Zhang, X. G. Cross-linked NiCo2O4 nanosheets with low crystallinity and rich oxygen vacancies for asymmetric supercapacitors. J. Alloys Compd. 2020, 822, 153689.
CAS
Google Scholar
Shinde, N. M.; Raut, S. D.; Ghule, B. G.; Gunturu, K. C.; Pak, J. J.; Mane, R. S. Recasting Ni-foam into NiF2 nanorod arrays via a hydrothermal process for hydrogen evolution reaction application. Dalton Trans. 2021, 50, 6500–6505.
CAS
Google Scholar
Jiang, X. L.; Tang, M. Y.; Tang, L.; Jiang, N.; Zheng, Q. J.; Xie, F. Y.; Lin, D. M. Hornwort-like hollow porous MoO3/NiF2 heterogeneous nanowires as high-performance electrocatalysts for efficient water oxidation. Electrochim. Acta 2021, 379, 138146.
CAS
Google Scholar
Sang, Y.; Cao, X.; Wang, L. X.; Ding, G. F.; Wang, Y. J.; Yu, D. S.; Hao, Y. N.; Li, L. L.; Peng, S. J. Facile synthesis of three-dimensional spherical Ni(OH)2/NiCo2O4 heterojunctions as efficient bifunctional electrocatalysts for water splitting. Int. J. Hydrogen Energy 2020, 45, 30601–30610.
CAS
Google Scholar
Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B:Environ. 2021, 281, 119510.
CAS
Google Scholar
Liu, H. Q.; Zhao, D. P.; Liu, Y.; Tong, Y. L.; Wu, X.; Shen, G. Z. NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 2021, 64, 581–591.
CAS
Google Scholar
He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem. 2019, 131, 12029–12035.
Google Scholar
Zhang, K.; Kim, W.; Ma, M.; Shi, X. J.; Park, J. H. Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. J. Mater. Chem. A 2015, 3, 4803–4810.
CAS
Google Scholar
Anwer, H.; Park, J. W. Addressing the OER/HER imbalance by a redox transition-induced two-way electron injection in a bifunctional n-p-n electrode for excellent water splitting. J. Mater. Chem. A 2020, 8, 13218–13230.
CAS
Google Scholar
Wang, G. R.; Li, Y. B.; Xu, L.; Jin, Z. L.; Wang, Y. B. Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renew. Energy 2020, 162, 535–549.
CAS
Google Scholar
She, H. D.; Yue, P. F.; Huang, J. W.; Wang, L.; Wang, Q. Z. One-step hydrothermal deposition of F: FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chem. Eng. J. 2020, 392, 123703.
CAS
Google Scholar
Xue, Z. H.; Su, H.; Yu, Q. Y.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Janus Co/CoP nanoparticles as efficient Mott-Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355.
Google Scholar
Chen, J. Y.; Fan, C.; Hu, X. Y.; Wang, C.; Huang, Z. H.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Hierarchically porous Co/CoxMy (M = P, N) as an efficient Mott-Schottky electrocatalyst for oxygen evolution in rechargeable Zn-air batteries. Small 2019, 15, 1901518.
Google Scholar
Hou, J. G.; Sun, Y. Q.; Wu, Y. Z.; Cao, S. Y.; Sun, L. C. Promoting active sites in core-shell nanowire array as Mott-Schottky electrocatalysts for efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1704447.
Google Scholar