Skip to main content
Log in

High energy and insensitive explosives based on energetic porous aromatic frameworks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The design and synthesis of energetic materials with a compatibility of high energy and insensitivity have always been the research fronts in military and civilian fields. Considering excellent performances of porous organic frameworks and the lack of research in the field of energetic materials, in this study, a new concept named energetic porous aromatic frameworks (EPAFs) is proposed. The strategy of coating high energy explosives such as 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) in the EPAFs by wet-infiltration method has successfully realized the assembly of target energetic composite materials. The results show that the 75 wt.% CL-20@EPAF-1 possesses the safer impact sensitivity of 31.4 J than that of CL-20 (4.0 J). Notably, for 75 wt.% CL-20@EPAF-1, in addition to the superior detonation performances of the detonation velocity (8,761 m·s−1) and detonation pressure (31.27 GPa), the synergistic effect of the nitrogen-rich EPAFs and the nitramines high energy explosives results in a higher heat of detonation that surpasses the most of pristine high explosives and reported novel energetic materials. In prospect, energetic porous aromatic frameworks could be a promising and inspiring strategy to build high energy insensitive energetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Sullivan, O. T.; Zdilla, M. J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 2020, 120, 5682–5744.

    Article  Google Scholar 

  2. Yin, P.; Zhang, Q. Q.; Shreeve, J. M. Dancing with energetic nitrogen atoms: Versatile N-functionalization strategies for N-heterocyclic frameworks in high energy density materials. Acc. Chem. Res. 2016, 49, 4–16.

    Article  CAS  Google Scholar 

  3. Ma, X. X.; Li, Y. X.; Hussain, I.; Shen, R. Q.; Yang, G. C.; Zhang, K. L. Core-shell structured nanoenergetic materials: Preparation and fundamental properties. Adv. Mater. 2020, 32, 2001291.

    Article  CAS  Google Scholar 

  4. Chang, J. J.; Zhao, G.; Zhao, X. Y.; He, C. L.; Pang, S. P.; Shreeve, J. M. New promises from an old friend: Iodine-rich compounds as prospective energetic biocidal agents. Acc. Chem. Res. 2021, 54, 332–343.

    Article  CAS  Google Scholar 

  5. Liu, Y. S.; Ouyang, S. X.; Guo, W. C.; Zong, H. H.; Cui, X. D.; Jin, Z.; Yang, G. C. Ultrafast one-step synthesis of N and Ti3+ codoped TiO2 nanosheets via energetic material deflagration. Nano Res. 2018, 11, 4735–4743.

    Article  CAS  Google Scholar 

  6. Ma, J. C.; Chinnam, A. K.; Cheng, G. B.; Yang, H. W.; Zhang, J.; Shreeve, J. M. 1,3,4-Oxadiazole bridges: A strategy to improve energetics at the molecular level. Angew. Chem., Int. Ed. 2021, 60, 5497–5504.

    Article  CAS  Google Scholar 

  7. Tang, Y. X.; Gao, H. X.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Enhancing energetic properties and sensitivity by incorporating amino and nitramino groups into a 1,2,4-oxadiazole building block. Angew. Chem., Int. Ed. 2016, 55, 1147–1150.

    Article  CAS  Google Scholar 

  8. Wei, H.; He, C. L.; Zhang, J. H.; Shreeve, J. M. Combination of 1,2,4-oxadiazole and 1,2,5-oxadiazole moieties for the generation of high-performance energetic materials. Angew. Chem., Int. Ed. 2015, 54, 9367–9371.

    Article  CAS  Google Scholar 

  9. Zhang, J. H.; Shreeve, J. M. 3,3 ′-Dinitroamino-4,4 ′-azoxyfurazan and its derivatives: An assembly of diverse N-O building blocks for high-performance energetic materials. J. Am. Chem. Soc. 2014, 136, 4437–4445.

    Article  CAS  Google Scholar 

  10. Zhang, J. H.; Zhang, Q. H.; Vo, T. T.; Parrish, D. A.; Shreeve, J. M. Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. J. Am. Chem. Soc. 2015, 137, 1697–1704.

    Article  CAS  Google Scholar 

  11. Zhang, J. H.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J. Am. Chem. Soc. 2015, 137, 10532–10535.

    Article  CAS  Google Scholar 

  12. Tang, Y. X.; Huang, W.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Enforced planar FOX-7-like molecules: A strategy for thermally stable and insensitive n-conjugated energetic materials. J. Am. Chem. Soc. 2020, 142, 7153–7160.

    Article  CAS  Google Scholar 

  13. Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Energetic N-nitramino/N-oxyl-functionalized pyrazoles with versatile π-π stacking: Structure-property relationships of high-performance energetic materials. Angew. Chem., Int. Ed. 2016, 55, 14409–14411.

    Article  CAS  Google Scholar 

  14. Barton, L. M.; Edwards, J. T.; Johnson, E. C.; Bukowski, E. J.; Sausa, R. C.; Byrd, E. F. C.; Orlicki, J. A.; Sabatini, J. J.; Baran, P. S. Impact of stereo- and regiochemistry on energetic materials. J. Am. Chem. Soc. 2019, 141, 12531–12535.

    Article  CAS  Google Scholar 

  15. Yin, P.; Parrish, D. A.; Shreeve, J. M. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: Ternary hydrogen-bond induced high energy density materials. J. Am. Chem. Soc. 2015, 137, 4778–4786.

    Article  CAS  Google Scholar 

  16. Bennion, J. C.; Matzger, A. J. Development and evolution of energetic cocrystals. Acc. Chem. Res. 2021, 54, 1699–1710.

    Article  CAS  Google Scholar 

  17. Bolton, O.; Matzger, A. J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem., Int. Ed. 2011, 50, 8960–8963.

    Article  CAS  Google Scholar 

  18. Bellas, M. K.; Matzger, A. J. Achieving balanced energetics through cocrystallization. Angew. Chem., Int. Ed. 2019, 58, 17185–17188.

    Article  CAS  Google Scholar 

  19. Titi, H. M.; Arhangelskis, M.; Rachiero, G. P.; Friščić, T.; Rogers, R. D. Hypergolic triggers as Co-crystal formers: Co-crystallization for creating new hypergolic materials with tunable energy content. Angew. Chem., Int. Ed. 2019, 58, 18399–18404.

    Article  CAS  Google Scholar 

  20. Li, S. H.; Wang, Y.; Qi, C.; Zhao, X. X.; Zhang, J. C.; Zhang, S. W.; Pang, S. P. 3D energetic metal-organic frameworks: Synthesis and properties of high energy materials. Angew. Chem., Int. Ed. 2013, 52, 14031–14035.

    Article  CAS  Google Scholar 

  21. Zhang, Q. H.; Shreeve, J. M. Metal-organic frameworks as high explosives: A new concept for energetic materials. Angew. Chem., Int. Ed. 2014, 53, 2540–2542.

    Article  CAS  Google Scholar 

  22. Zhang, S.; Yang, Q.; Liu, X. Y.; Qu, X. N.; Wei, Q.; Xie, G.; Chen, S. P.; Gao, S. L. High-energy metal-organic frameworks (HE-MOFs): Synthesis, structure and energetic performance. Coord. Chem. Rev. 2016, 307, 292–312.

    Article  CAS  Google Scholar 

  23. Sebastiao, E.; Cook, C.; Hu, A.; Murugesu, M. Recent developments in the field of energetic ionic Liquids. J. Mater. Chem. A 2014, 2, 8153–8173.

    Article  CAS  Google Scholar 

  24. Eymann, J.; Joucla, L.; Jacob, G.; Raynaud, J.; Darwich, C.; Lacôte, E. Energetic nitrogen-rich polymers with a tetrazene-based backbone. Angew. Chem., Int. Ed. 2021, 60, 1578–1582.

    Article  CAS  Google Scholar 

  25. Titi, H. M.; Marrett, J. M.; Dayaker, G.; Arhangelskis, M.; Mottillo, C.; Morris, A. J.; Rachiero, G. P.; Friščić, T.; Rogers, R. D. Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: Unlocking the latent energetic behavior of ZIFs. Sci. Adv. 2019, 5, eaav9044.

    Article  CAS  Google Scholar 

  26. Zhang, J. C.; Feng, Y. A.; Staples, R. J.; Zhang, J. H.; Shreeve, J. M. Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks. Nat. Commun. 2021, 12, 2146.

    Article  CAS  Google Scholar 

  27. Gao, H. X.; Joo, Y. H.; Twamley, B.; Zhou, Z. Q.; Shreeve, J. M. Hypergolic ionic liquids with the 2,2-dialkyltriazanium cation. Angew. Chem., Int. Ed. 2009, 48, 2792–2795.

    Article  CAS  Google Scholar 

  28. Majano, G.; Mintova, S.; Bein, T.; Klapötke, T. M. High-density energetic material hosted in pure silica MFI-type zeolite nanocrystals. Adv. Mater. 2006, 18, 2440–2443.

    Article  CAS  Google Scholar 

  29. Wang, S.; Wang, Q. Y.; Feng, X.; Wang, B.; Yang, L. Explosives in the cage: Metal-organic frameworks for high-energy materials sensing and desensitization. Adv. Mater. 2017, 29, 1701898.

    Article  Google Scholar 

  30. McDonald, K. A.; Bennion, J. C.; Leone, A. K.; Matzger, A. J. Rendering non-energetic microporous coordination polymers explosive. Chem. Commun. 2016, 52, 10862–10865.

    Article  CAS  Google Scholar 

  31. Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem., Int. Ed. 2009, 48, 9457–9460.

    Article  CAS  Google Scholar 

  32. Tian, Y. Y.; Zhu, G. S. Porous aromatic frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986.

    Article  CAS  Google Scholar 

  33. Yuan, Y.; Zhu, G. Porous aromatic frameworks as a platform for multifunctional applications. ACS Cent. Sci. 2019, 5, 409–418.

    Article  CAS  Google Scholar 

  34. Uliana, A. A.; Bui, N. T.; Kamcev, J.; Taylor, M. K.; Urban, J. J.; Long, J. R. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 2021, 372, 296–299.

    Article  CAS  Google Scholar 

  35. Van Humbeck, J. F.; McDonald, T. M.; Jing, X. F.; Wiers, B. M.; Zhu, G.; Long, J. R. Ammonia capture in porous organic polymers densely functionalized with bransted acid groups. J. Am. Chem. Soc. 2014, 136, 2432–2440.

    Article  CAS  Google Scholar 

  36. Tian, Y. Y.; Song, J.; Zhu, Y. L.; Zhao, H. Y.; Muhammad, F.; Ma, T. T.; Chen, M.; Zhu, G. S. Understanding the desulphurization process in an ionic porous aromatic framework. Chem. Sci. 2019, 10, 606–613.

    Article  CAS  Google Scholar 

  37. Zhu, G. S. Reaction: Goal-oriented PAF design for uranium extraction from seawater. Chem 2021, 7, 277–278.

    Article  CAS  Google Scholar 

  38. Zhang, P. P.; Zou, X. Q.; Song, J.; Tian, Y. Y.; Zhu, Y. L.; Yu, G. L.; Yuan, Y.; Zhu, G. S. Anion substitution in porous aromatic frameworks: Boosting molecular permeability and selectivity for membrane acetylene separation. Adv. Mater. 2020, 32, 1907449.

    Article  Google Scholar 

  39. Zou, J. Y.; Trewin, A.; Ben, T.; Qiu, S. L. High uptake and fast transportation of LiPF6 in a porous aromatic framework for solid-state Li-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 769–774.

    Article  CAS  Google Scholar 

  40. Ratsch, M.; Ye, C.; Yang, Y. Z.; Zhang, A. R.; Evans, A. M.; Börjesson, K. All-carbon-linked continuous three-dimensional porous aromatic framework films with nanometer-precise controllable thickness. J. Am. Chem. Soc. 2020, 142, 6548–6553.

    Article  CAS  Google Scholar 

  41. Lee, J. S. M.; Sato, H. Photoswitching to the core. Nat. Chem. 2020, 12, 584–588.

    Article  CAS  Google Scholar 

  42. Jiang, L. C.; Tian, Y. Y.; Sun, T.; Zhu, Y. L.; Ren, H.; Zou, X. Q.; Ma, Y. H.; Meihaus, K. R.; Long, J. R.; Zhu, G. S. A Crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene. J. Am. Chem. Soc. 2018, 140, 15724–15730.

    Article  CAS  Google Scholar 

  43. Song, J.; Li, Y.; Cao, P.; Jing, X. F.; Faheem, M.; Matsuo, Y.; Zhu, Y. L.; Tian, Y. Y.; Wang, X. H.; Zhu, G. S. Synergic catalysts of polyoxometalate@cationic porous aromatic frameworks: Reciprocal modulation of both capture and conversion materials. Adv. Mater. 2019, 31, 1902444.

    Article  CAS  Google Scholar 

  44. Chen, D.; Yang, H. W.; Yi, Z. X.; Xiong, H. L.; Zhang, L.; Zhu, S. G.; Cheng, G. B. C8N26H4: An environmentally friendly primary explosive with high heat of formation. Angew. Chem., Int. Ed. 2018, 57, 2081–2084.

    Article  CAS  Google Scholar 

  45. Feng, Y. A.; Bi, Y. G.; Zhao, W. Y.; Zhang, T. L. Anionic metal-organic frameworks lead the way to eco-friendly high-energy-density materials. J. Mater. Chem. A 2016, 4, 7596–7600.

    Article  CAS  Google Scholar 

  46. Klapötke, T. M.; Stierstorfer, J. The CN 7 CN7 anion. J. Am. Chem. Soc. 2009, 131, 1122–1134.

    Article  Google Scholar 

  47. Zhao, H. Y.; Jin, Z.; Su, H. M.; Zhang, J. L.; Yao, X. D.; Zhao, H. J.; Zhu, G. S. Target synthesis of a novel porous aromatic framework and its highly selective separation of CO2/CH4. Chem. Commun. 2013, 49, 2780–2782.

    Article  CAS  Google Scholar 

  48. Dang, Q. Q.; Zhan, Y. F.; Wang, X. M.; Zhang, X. M. Heptazine-based porous framework for selective CO2 sorption and organocatalytic performances. ACS Appl. Mater. Interfaces 2015, 7, 28452–28458.

    Article  CAS  Google Scholar 

  49. Borchardt L.; Kockrick E.; Wollmann P.; Kaskel S.; Guron, M. M.; Sneddon, L. G.; Geiger D. Ordered mesoporous boron carbide based materials via precursor nanocasting. Chem. Mater. 2010, 22, 4660–4668.

    Article  Google Scholar 

  50. Yan, Q. L.; Yang, Z. J.; Zhang, X. X.; Lyu, J. Y.; He, W.; Huang, S.; Liu, P. J.; Zhang, C. Y.; Zhang, Q. H.; He, G. Q.; Nie, F. D. High density assembly of energetic molecules under the constraint of defected 2D materials. J. Mater. Chem. A 2019, 7, 17806–17814.

    Article  CAS  Google Scholar 

  51. Song, Z. W.; Yan, Q. L.; Li, X. J.; Qi, X. F.; Liu, M. Crystal transition of ε-CL-20 in different solvent. Chin. J. Energ. Mater. 2010, 18, 648–653.

    CAS  Google Scholar 

  52. Qin, J. S.; Zhang, J. C.; Zhang, M.; Du, D. Y.; Li, J.; Su, Z. M.; Wang, Y. Y.; Pang, S. P.; Li, S. H.; Lan, Y. Q. A highly energetic N-rich zeolite-like metal-organic framework with excellent air stability and insensitivity. Adv. Sci. 2015, 2, 1500150.

    Article  Google Scholar 

  53. Zhang, J. C.; Du, Y.; Dong, K.; Su, H.; Zhang, S. W.; Li, S. H.; Pang, S. P. Taming dinitramide anions within an energetic metal-organic framework: A new strategy for synthesis and tunable properties of high energy materials. Chem. Mater. 2016, 28, 1472–1480.

    Article  CAS  Google Scholar 

  54. Zhang, M.; Li, C.; Gao, H. Q.; Fu, W.; Li, Y. Y.; Tang, L. W.; Zhou, Z. M. Promising hydrazinium 3-nitro-1,2,4-triazol-5-one and its analogs. J. Mater. Sci. 2016, 51, 10849–10862.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of National Defense Basic Research Program of China (No. 2019-JCJQ-ZD-139-00), and the National Natural Science Foundation of China (No. 22075040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinghai Shu, Yuyang Tian or Guangshan Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Shi, Y., Lu, Y. et al. High energy and insensitive explosives based on energetic porous aromatic frameworks. Nano Res. 15, 1698–1705 (2022). https://doi.org/10.1007/s12274-021-3888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3888-8

Keywords

Navigation