Skip to main content

Advertisement

Log in

Promising hydrazinium 3-Nitro-1,2,4-triazol-5-one and its analogs

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Twelve salts of 3-nitro-1,2,4-triazol-5-one (NTO) (ammonium, hydrazinium, guanidinium, aminoguanidinium, diaminoguanidinium, triaminoguanidinium, N-carbamoylguanidinium, semicarbazidium, 1,5-diamino-1,2,4-tetrazolium, 3,4,5- triamino-1,2,4-triazolium, 3,6,7-triamino-7H-[1, 2, 4]triazolo[5,1-c][1,2,4]triazol-2- ium, and 4,4′,5,5′-tetraamino-3,3′-bi-1,2,4-triazolium) were synthesized. The new salts were fully characterized by 1H and 13C NMR spectroscopy, infrared spectroscopy, and elemental analysis. The crystal structures of salts 10 and 11 were determined by single-crystal X-ray diffraction. All energetic salts except salt 6 exhibit excellent thermal stabilities with decomposition temperatures ranging from 203 to 270 °C. The densities of salts ranged from 1.65 to 1.88 g cm−1 as measured by a gas pycnometer. Theoretical performance calculations (Gaussian 03 and EXPLO5 v6.01) yielded detonation pressures and detonation velocities for the energetic salts, ranging from 24.4 to 38.1 GPa and 8136 to 9575 m s−1, respectively. In particular, salt 2 has an outstanding detonation performance (P cj = 38.1 GPa, v D = 9575 m s−1) with a satisfactory acidity compared to that of NTO (pK a = 5.63 versus pK a = 2.37). Furthermore, the particles of salt 2 form two-dimensional blades of submicron size, as determined by scanning electron microscopy analysis. Meanwhile, salt 2 was compatible with TNAZ, TATB, TKX-50, Al, NH4ClO4, CL-20, TNT, and F2603 fluororubber, as determined by differential scanning calorimetry or vacuum stability tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5

Similar content being viewed by others

References

  1. Milles MH, Gustaveson D, Devries KL (1983) Stress-induced radical generation in TATB. J Mater Sci 18:3243–3248

    Article  Google Scholar 

  2. Yan Z, Liu W, Zhang C, Li J, Xiang X, Huang M, Liao W, Yang Z, Tan B, Li Z, Li L, Yan H, Yuan X, Zu X (2016) Scratch defects modulated hot spots generation in laser irradiated RDX crystals: a 3D FDTD simulation. J Mater Sci 51:8812–8823

    Article  Google Scholar 

  3. Lan Y, Zhai J, Li D, Yang R (2015) The influence of solution chemistry on the morphology of ammonium dinitramide crystals. J Mater Sci 50:4933–4939

    Article  Google Scholar 

  4. Guo C, Zhang H, Wang X, Liu X, Sun J (2013) Study on a novel energetic cocrystal of TNT/TNB. J Mater Sci 48:1351–1357

    Article  Google Scholar 

  5. LaBarbera DA, Zikry MA (2015) Dynamic fracture and local failure mechanisms in heterogeneous RDX-Estane energetic aggregates. J Mater Sci 50:5549–5561

    Article  Google Scholar 

  6. Huang H, Zhou Z, Liang L, Song J, Wang K, Cao D, Sun W, Bian C, Xue M (2012) Nitrogen-Rich energetic monoanionic salts of 3, 4-Bis (1H-5-tetrazolyl) furoxan. Chem Asian J 7:707–714

    Article  Google Scholar 

  7. Liang L, Huang H, Wang K, Bian C, Song J, Ling L, Zhao F, Zhou Z (2012) Oxy-bridged bis (1H-tetrazol-5-yl) furazan and its energetic salts paired with nitrogen-rich cations: highly thermally stable energetic materials with low sensitivity. J Mater Chem 22:21954–21964

    Article  Google Scholar 

  8. Chand D, Parrish DA, Shreeve JM (2013) Di (1H-tetrazol-5-yl) methanone oxime and 5, 5′-(hydrazonomethylene) bis (1 H-tetrazole) and their salts: a family of highly useful new tetrazoles and energetic materials. J Mater Chem A 1:15383–15389

    Article  Google Scholar 

  9. Joo Y-H, Chung JH, Cho SG, Goh EM (2013) Energetic salts based on 1-methoxy-5-nitroiminotetrazole. New J Chem 37:1180–1188

    Article  Google Scholar 

  10. Schmitt D, Eyerer P, Elsner P (1997) Insensitive High-performance energetic materials—applied research for optimized products. Propellants Explos Pyrotech 22:109–111

    Article  Google Scholar 

  11. Badgujar D, Talawar M, Asthana S, Mahulikar P (2008) Advances in science and technology of modern energetic materials: an overview. J Hazard Mater 151:289–305

    Article  Google Scholar 

  12. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B, Rao AS (2009) Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater 161:589–607

    Article  Google Scholar 

  13. Fischer N, Fischer D, Klapötke TM, Piercey DG, Stierstorfer J (2012) Pushing the limits of energetic materials–the synthesis and characterization of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate. J Mater Chem 22:20418–20422

    Article  Google Scholar 

  14. Ma S, Li Y, Li Y, Luo Y (2016) Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics. J Mol Model 22:1–11

    Article  Google Scholar 

  15. Xiong S, Chen S, Li L, Jin S, Li J (2016) Purity analysis method of Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50). J Energ Mater 34:279–287

    Article  Google Scholar 

  16. Wang J, Yi W, Cai C (2012) An improved method for the preparation of energetic aminotetrazolium salts. Z Anorg Allg Chem 638:53–55

    Article  Google Scholar 

  17. Srinivas D, Ghule VD, Muralidharan K, Jenkins HDB (2013) Tetraanionic Nitrogen-rich Tetrazole-Based energetic salts. Chem-Asian J 8:1023–1028

    Article  Google Scholar 

  18. Axthammer QJ, Krumm B, Klapötke TM (2015) Pentaerythritol-based energetic materials related to PETN. Eur J Org Chem 2015:723–729

    Article  Google Scholar 

  19. Nimesh S, Ang HG (2015) 1-(2H-tetrazolyl)-1,2,4-triazole-5-amine (TzTA)-A thermally stable nitrogen rich energetic material: synthesis, characterization and thermo-chemical analysis. Propellants Explos Pyrotech 40:426–432

    Article  Google Scholar 

  20. Sikder A, Geetha M, Sarwade D, Agrawal J (2001) Studies on characterisation and thermal behaviour of 3-amino-5-nitro-1, 2, 4-triazole and its derivatives. J Hazard Mater 82:1–12

    Article  Google Scholar 

  21. Naud DL, Hiskey MA, Harry HH (2003) Synthesis and explosive properties of 5, 5′-Dinitro-3, 3′-azo-1H-1, 2, 4-triazole (DNAT). J Energy Mater 21:57–62

    Article  Google Scholar 

  22. Izsák D, Klapötke TM, Scharf R, Stierstorfer J (2013) Energetic Materials Based on the 5-Azido-3-nitro-1, 2, 4-triazolate Anion. Z Anorg Allg Chem 639:1746–1755

    Article  Google Scholar 

  23. Yin P, He C, Shreeve JM (2016) Fully C/N-Polynitro functionalized 2,2′-Biimidazole derivatives as nitrogen-and oxygen-rich energetic salts. Chem-Eur J 22:2108–2113

    Article  Google Scholar 

  24. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54:11525–11536

    Article  Google Scholar 

  25. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812

    Article  Google Scholar 

  26. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) A review of energetic materials synthesis. Thermochim Acta 384:187–204

    Article  Google Scholar 

  27. Wang R, Xu H, Guo Y, Sa R, Shreeve JM (2010) Bis [3-(5-nitroimino-1,2, 4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials. J Am Chem Soc 132:11904–11905

    Article  Google Scholar 

  28. Manchot V, Noll R (1905) Justus Liebig Ann der Chem 1:343

    Google Scholar 

  29. Singh G, Kapoor IPS, Felix SP, Agrawal JP (2002) Studies on energetic compounds part 23: preparation, thermal and explosive characteristics of transition metal salts of 5-nitro-2,4-dihydro-3H-1,2,4-triazole-3-one (NTO). Propellants Explos Pyrotech 27:16–22

    Article  Google Scholar 

  30. Lee K-Y, Coburn MD (1988) 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive. Google Patents

  31. Lee K-Y, Stinecipher MM (1989) Synthesis and initial characterization of amine salts of 3-Nitro-1, 2, 4-Triazol-5-one. Propellants Explos Pyrotech 14:241–244

    Article  Google Scholar 

  32. Kulkarni P, Reddy T, Nair J, Nazare A, Talawar M, Mukundan T, Asthana S (2005) Studies on salts of 3-nitro-1,2,4-triazol-5-one (NTO) and 2, 4, 6-trinitroanilino benzoic acid(TABA): potential energetic ballistic modifiers. J Hazard Mater 123:54–60

    Article  Google Scholar 

  33. Yi J, Zhao F, Gao H, Xu S, Wang M (2008) Preparation, characterization, non-isothermal reaction kinetics, thermodynamic properties, and safety performances of high nitrogen compound: hydrazine 3-nitro-1,2,4-triazol-5-one complex. J Hazard Mater 153:261–268

    Article  Google Scholar 

  34. Li J, Chen B, OuY ZhuN (1991) Crystal structure of ammonium 3-nitro-1, 2,4-triazol-5-onate. Propellants Explos Pyrotech 16:145–146

    Article  Google Scholar 

  35. Zhang T, Lu C, Zhang J, Yu K (2003) Preparation and Molecular Structure of {[Ca (CHZ)2(H2O)](NTO2·3.5H2O}n. Propellants Explos Pyrotech 28:271–276

    Article  Google Scholar 

  36. Ma H, Song J, Hu R, Zhai G, Xu K, Wen Z (2004) Molecular structure, the quantum chemical investigation and the thermal behavior of the dimethylamine salt of 3-nitro-1,2,4-triazol-5-one,(CH3)2NH2 +C2N4O3H. J Mol Struct 678:217–222

    Article  Google Scholar 

  37. Huang X, Wang B, Li D, Ng SW (2013) Carbamoyl (diaminomethylidene) azanium 3-nitro-5-oxo-4,5-dihydro-1H-1,2,4-triazol-4-ide. Acta Crystall E 69:o1086

    Article  Google Scholar 

  38. Singh G, Kapoor IPS, Tiwari SK, Felix PS (2001) Studies on energetic compounds: part 16. Chemistry and decomposition mechanisms of 5-nitro-2, 4-dihydro-3H-1, 2, 4-triazole-3-one (NTO). J Hazard Mater 81:67–82

    Article  Google Scholar 

  39. Ma H, Song J, Hu R, Gao S, Yu K (2002) Preparation, crystal structure and thermodynamic properties of [Mg(H2O)6](NTO)2·2H2O. Thermochim Acta 389:43–47

    Article  Google Scholar 

  40. Singh G, Felix SP (2003) Studies on energetic compounds. Part 32: crystal structure, thermolysis and applications of NTO and its salts. J Mol Struct 649:71–83

    Article  Google Scholar 

  41. Song J, Ma H, Huang J, Hu R (2004) Preparation, crystal structure, thermal decomposition mechanism and thermodynamic properties of [Co(H2O)6](NTO)2·2H2O. Thermochim Acta 416:43–46

    Article  Google Scholar 

  42. Kulkarni P, Purandare G, Nair J, Talawar M, Mukundan T, Asthana S (2005) Synthesis, characterization, thermolysis and performance evaluation studies on alkali metal salts of TABA and NTO. J Hazard Mater 119:53–61

    Article  Google Scholar 

  43. Song J, Hu R, Kang B, Lei Y, Li F, Yu K (1999) Thermal decomposition mechanism and thermodynamic properties of [Cd(NTO)4Cd(H2O)6]·4H2O. J Therm Anal Calorim 55:797–806

    Article  Google Scholar 

  44. Huynh MHV, Hiskey MA, Pollard CJ, Montoya DP, Artline L, Gilardi R (2004) 4,4′,6,6′-Tetra-substituted Hydrazo-and Azo-1,3,5-Triazines. J Energ Mater 22:217–229

    Article  Google Scholar 

  45. Ostrovskii VA, Pevzner MS, Kofman TP, Shcherbinin MB, Tselinskii IV (1999) Energetic 1,2,4-Triazoles and Tetrazoles: synthesis, structure and properties. Targets Heterocycl Syst 3:467–526

    Google Scholar 

  46. Cromer DT, Hall J, Lee K-Y, Ryan R (1988) Structure of the 1,3- diaminoguanidinium salt of 3-nitro-1,2,4-triazol-5-one, CH8N5 +.C2HN4O3 . Acta Cryst C 44:2206–2208

    Article  Google Scholar 

  47. Li J, Chen B, Ou Y, Cui X, Liu Z (1992) Structure of the 3-amino- 1,2,4-triazolium salt of 3-nitro-1,2,4-triazol-5-one. Acta Cryst C 48:1540–1542

    Article  Google Scholar 

  48. Xei Y, Hu R, Yang C, Feng G, Zhou J (1992) Studies on the critical temperature of thermal explosion for 3-Nitro-1,2,4-triazol-5-one (NTO) and its salts. Propellants Explos Pyrotech 17:298–302

    Article  Google Scholar 

  49. Finch A, Gardner PJ, Head AJ, Majdi HS (1993) The standard enthalpies of formation of the ammonium and silver salts of 3-nitro-1,2,4-triazol-5-one. Thermochim Acta 213:17–22

    Article  Google Scholar 

  50. Xue H, Gao H, Twamley B, Shreeve JM (2007) Energetic salts of 3-nitro- 1,2,4-triazole-5-one, 5-nitroaminotetrazole, and other nitro-substituted azoles. Chem Mater 19:1731–1739

    Article  Google Scholar 

  51. Liang L, Wang K, Bian C, Ling L, Zhou Z (2013) 4-Nitro-3-(5-tetrazole) furoxan and its salts: synthesis, characterization, and energetic properties. Chem –Euro J 19:14902–14910

  52. Bian C, Wang K, Liang L, Zhang M, Li C, Zhou Z (2014) Nitrogen-Rich energetic salts of Bis-Heterocycle-substituted 1,2,3-Triazole (HTANFT). Eur J Inorg Chem 2014:6022–6030

    Article  Google Scholar 

  53. Li C, Liang L, Wang K, Bian C, Zhang J, Zhou Z (2014) Polynitro-substituted bispyrazoles: a new family of high-performance energetic materials. J Mater Chem A 2:18097–18105

    Article  Google Scholar 

  54. Bian C, Zhang M, Li C, Zhou Z (2015) 3-Nitro-1-(2H-tetrazol-5-yl)-1H-1,2,4- triazol-5-amine (HANTT) and its energetic salts: highly thermally stable energetic materials with low sensitivity. J Mater Chem A 3:163–169

    Article  Google Scholar 

  55. Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Edit 50:8960–8963

    Article  Google Scholar 

  56. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2: 1 cocrystal of CL-20: HMX. Cryst Growth Des 12:4311–4314

    Article  Google Scholar 

  57. Shen J, Shi W, Wang J, Gao B, Qiao Z, Huang H, Nie F, Li R, Li Z, Liu Y (2014) Facile fabrication of porous CL-20 for low sensitivity high explosives. Phys Chem Chem Phys 16:23540–23543

    Article  Google Scholar 

  58. Li Z, Wang Y, Zhang Y, Liu L, Zhang S (2015) CL-20 hosted in graphene foam as a high energy material with low sensitivity. RSC Adv 5:98925–98928

    Article  Google Scholar 

  59. Yin P, Zhang J, Parrish DA, Shreeve JM (2015) Energetic fused triazoles–a promising C-N fused heterocyclic cation. J Mater Chem A 3:8606–8612

    Article  Google Scholar 

  60. Klapötke TM, Schmid PC, Schnell S, Stierstorfer J (2015) Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4,4′,5,5′-tetraamino- 3,3′-bi-1,2,4-triazolium cation. J Mater Chem A 3:2658–2668

    Article  Google Scholar 

  61. Agrawal JP, Hodgson R (2007) Org Chem Explos. Wiley, Hoboken

    Google Scholar 

  62. Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. Wiley, Hoboken

    Book  Google Scholar 

  63. Stierstorfer J, Klapötke TM, Hammerl A, Chapman RD (2008) 5-azido-1H-tetrazole improved synthesis, crystalstructure and sensitivity data. Z Anorg Allg Chem 634:1051–1057

    Article  Google Scholar 

  64. A range in impact sensitivities from UN recommendations: insensitive > 40 J; less sensitive ≥ 35 J; sensitive ≥ 4 J; very sensitive ≤ 3 J

  65. Gutowski KE, Holbrey JD, Rogers RD, Dixon DA (2005) Prediction of the formation and stabilities of energetic salts and ionic liquids based on ab initio electronic structure calculations. J Phys Chem B 109:23196–23208

    Article  Google Scholar 

  66. Schmidt MW, Gordon MS, Boatz JA (2005) Triazolium-based energetic ionic liquids. J Phys Chem A 109:7285–7295

    Article  Google Scholar 

  67. Gao H, Ye C, Piekarski CM, Shreeve JM (2007) Computational characterization of energetic salts. J Phys Chem C 111:10718–10731

    Article  Google Scholar 

  68. Gutowski KE, Rogers RD, Dixon DA (2007) Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J Phys Chem B 111:4788–4800

    Article  Google Scholar 

  69. Zhang X, Zhu W, We T, Zhang C, Xiao H (2010) Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations: a computational study. J Phys Chem C 114:13142–13152

    Article  Google Scholar 

  70. Joo Y-H, Shreeve JM (2009) 1, 3-Diazido-2-(azidomethyl)-2-propylammonium Salts. Inor Chem 48:8431–8438

    Article  Google Scholar 

  71. Wang R, Guo Y, Zeng Z, Twamley B, Shreeve JM (2009) Furazan-Functionalized Tetrazolate-Based Salts: a New Family of Insensitive Energetic Materials. Chem -Euro J 15:2625–2634

    Article  Google Scholar 

  72. Guo Y, Tao GH, Zeng Z, Gao H, Parrish DA, Shreeve JM (2010) Energetic salts based on monoanions of N, N-Bis (1H-tetrazol-5-yl) amine and 5,5′-Bis (tetrazole). Chem -Euro J 16:3753–3762

    Article  Google Scholar 

  73. Zhang Y, Guo Y, Joo YH, Parrish DA, Shreeve JM (2010) 3,4,5- Trinitropyrazole-based energetic salts. Chem –Euro J 16: 10778–10784

  74. Zhou Y, Yao C, Ni R, Yang G (2010) Amine Salt–Catalyzed synthesis of 5-substituted 1H-Tetrazoles from Nitriles. synthetic communications® 40:2624–2632

  75. Sućeska M, EXPLO5, version 6.01. Brodarski institute: Zagreb, Croatia 2013

  76. Beach NE, Canfield VK, Compatibility of explosives with polymers (III). AD721004

  77. C St Cyr Marjorie, Compatibility of explosives with polymers. AD7l4634

  78. Chang C, Xu K, Huang J, Li M, Song J, Ma H, Zhao F (2008) Molecular structure, theoretical calculation and thermal behavior of DAG (NTO). Chin J Chem 26:549–1554

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Fund Project (No. 21172020), the Pre-research Project of General Armament Department (No. 40406030202), and the Beijing Municipal Natural Science Foundation (No. 2132035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, C., Gao, H. et al. Promising hydrazinium 3-Nitro-1,2,4-triazol-5-one and its analogs. J Mater Sci 51, 10849–10862 (2016). https://doi.org/10.1007/s10853-016-0296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0296-7

Keywords

Navigation