Skip to main content
Log in

Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Layered Mn-based oxides are one of the promising cathode materials for potassium-ion batteries (KIBs) owing to their high theoretical capacities, abundant material supply, and simple synthesis method. However, the structural deterioration resulting from the Jahn-Teller effect of Mn ions hinders their further development in KIBs. Herein, a novel Mn-based layered oxide, K0.54Mn0.78Mg0.22O2, is successfully designed and fabricated as KIBs cathode for the first time. It delivers smooth charging/discharging curves with high specific capacity of 132.4 mA·g−1 at 20 mA·g−1 and good high-rate cycling stability with a capacity retention of 84% over 100 cycles at 200 mA·g−1. Combining in-situ X-ray diffraction (XRD) and ex-situ X-ray photoelectron spectroscopy (XPS) analysis, the storage of K-ions by K0.54Mn0.78Mg0.22O2 is revealed to be a solid-solution processes with reversible slip of the crystal lattice. The studies suggest that the rational doping of inactive Mg2+ can effectively suppress the Jahn-Teller effect and provide outstanding structure stability. This work deepens the understanding of the structural evolution of Mn-based layered materials doped with inactive materials during de/potassiation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, F.; Li, Q.; Wang, T. Y.; Zhang, H. G.; Wu, G. Energy storage materials derived from Prussian blue analogues. Sci. Bull. 2017, 62, 358–368.

    Article  CAS  Google Scholar 

  2. Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

    Article  CAS  Google Scholar 

  3. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

    Article  CAS  Google Scholar 

  4. Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and challenges facing flexible lithium-ion batteries for practical application. Small 2018, 14, 1702989.

    Article  Google Scholar 

  5. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  CAS  Google Scholar 

  6. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  CAS  Google Scholar 

  7. Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

    Article  Google Scholar 

  8. Hwang, J. Y.; Kim, J.; Yu, T. Y.; Jung, H. G.; Sun, Y. K. New P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. J. Mater. Chem. A 2019, 7, 21362–21370.

    Article  CAS  Google Scholar 

  9. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  10. Zhang, J. D.; Liu, T. T.; Cheng, X.; Xia, M. T.; Zheng, R. T.; Peng, N.; Yu, H. X.; Shui, M.; Shu, J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy 2019, 60, 340–361.

    Article  CAS  Google Scholar 

  11. Yao, Q. Q.; Zhu, C. B. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 2020, 30, 2005209.

    Article  CAS  Google Scholar 

  12. Huang, R. L.; Lin, J.; Zhou, J. H.; Fan, E. S.; Zhang, X. X.; Chen, R. J.; Wu, F.; Li, L. Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small 2021, 17, 2007597.

    Article  CAS  Google Scholar 

  13. Bai, P. L.; Jiang, K. Z.; Zhang, X. P.; Xu, J. L.; Guo, S. H.; Zhou, H. S. Ni-doped layered manganese oxide as a stable cathode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 10490–10495.

    Article  CAS  Google Scholar 

  14. Zhang, X. Y.; Yang, Y. B.; Qu, X. L.; Wei, Z. X.; Sun, G.; Zheng, K.; Yu, H. J.; Du, F. Layered P2-type K0.44Ni0.22Mn0.78O2 as a highperformance cathode for potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1905679.

    Article  CAS  Google Scholar 

  15. Chong, S. K.; Wu, Y. F.; Liu, C. F.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Cao, G. Z. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 2018, 54, 106–115.

    Article  CAS  Google Scholar 

  16. Xue, Q.; Li, L.; Huang, Y. X.; Huang, R. L.; Wu, F.; Chen, R. J. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 2019, 11, 22339–22345.

    Article  CAS  Google Scholar 

  17. Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium Prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

    Article  Google Scholar 

  18. Han, J.; Li, G. N.; Liu, F.; Wang, M. Q.; Zhang, Y.; Hu, L. Y.; Dai, C. L.; Xu, M. W. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. Chem. Commun. 2017, 53, 1805–1808.

    Article  CAS  Google Scholar 

  19. Gao, H. C.; Xue, L. G.; Xin, S.; Goodenough, J. B. A high-energydensity potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem., Int. Ed. 2018, 57, 5449–5453.

    Article  CAS  Google Scholar 

  20. Obrezkov, F. A.; Ramezankhani, V.; Zhidkov, I.; Traven, V. F.; Kurmaev, E. Z.; Stevenson, K. J.; Troshin, P. A. High-energy and high-power-density potassium ion batteries using dihydrophenazine-based polymer as active cathode material. J. Phys. Chem. Lett. 2019, 10, 5440–5445.

    Article  CAS  Google Scholar 

  21. Hwang, J. Y.; Kim, J.; Yu, T. Y.; Myung, S. T.; Sun, Y. K. Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries. Energy Environ. Sci. 2018, 11, 2821–2827.

    Article  CAS  Google Scholar 

  22. Choi, J. U.; Kim, J.; Hwang, J. Y.; Jo, J. H.; Sun, Y. K.; Myung, S. T. K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy 2019, 61, 284–294.

    Article  CAS  Google Scholar 

  23. Vaalma, C.; Giffin, G. A.; Buchholz, D.; Passerini, S. Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black. J. Electrochem. Soc. 2016, 163, A1295–A1299.

    Article  CAS  Google Scholar 

  24. Kim, H.; Seo, D. H,; Kim, J. C.; Bo, S. H.; Liu, L.; Shi, T.; Ceder, G. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode. Adv. Mater. 2017, 29, 1702480.

    Article  Google Scholar 

  25. Zhao, S. Q.; Yan, K.; Munroe, P.; Sun, B.; Wang, G. X. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for highperformance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1803757.

    Article  Google Scholar 

  26. Liu, C. L.; Luo, S. H.; Huang, H. B.; Liu, X.; Zhai, Y. C.; Wang, Z. W. Fe-doped layered P3-type K0.45Mn1-xFexO2 (x≤0.5) as cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2019, 378, 122167.

    Article  CAS  Google Scholar 

  27. Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A 2014, 2, 16851–16855.

    Article  CAS  Google Scholar 

  28. Zhang, Q.; Didier, C.; Pang, W. K.; Liu, Y. J.; Wang, Z. J.; Li, S. A.; Peterson, V. K.; Mao, J. F.; Guo, Z. P. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900568.

    Article  Google Scholar 

  29. Talaie, E.; Duffort, V.; Smith, H. L.; Fultz, B.; Nazar, L. F. Structure of the high voltage phase of layered P2-Na2/3-Z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability. Energy Environ. Sci. 2015, 8, 2512–2523.

    Article  CAS  Google Scholar 

  30. Singh, G.; Tapia-Ruiz, N.; Del Amo, J. M. L.; Maitra, U.; Somerville, J. W.; Armstrong, A. R.; De Ilarduya, J. M.; Rojo, T.; Bruce, P. G. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chem. Mater. 2016, 28, 5087–5094.

    Article  Google Scholar 

  31. Barker, J.; Gover, R. K. B.; Burns, P.; Bryan, A. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3. J. Electrochem. Soc. 2007, 154, A307–A313.

    Article  CAS  Google Scholar 

  32. Xiang, J. F.; Chang, C. X.; Zhang, F.; Sun, J. T. Effects of Mg doping on the electrochemical properties of LiNi0.8Co0.2O2 cathode material. J. Alloys Compd. 2009, 475, 483–487.

    Article  CAS  Google Scholar 

  33. Somerville, J. W.; House, R. A.; Tapia-Ruiz, N.; Sobkowiak, A.; Ramos, S.; Chadwick, A. V.; Roberts, M. R.; Maitra, U.; Bruce, P. G. Identification and characterisation of high energy density P2-type Na2/3[Ni1/3-y/2Mn2/3-y/2Fey]O2 compounds for Na-ion batteries. J. Mater. Chem. A 2018, 6, 5271.5275.

    Article  CAS  Google Scholar 

  34. Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodiumion batteries. Angew. Chem., Int. Ed. 2016, 55, 7445–7449.

    Article  CAS  Google Scholar 

  35. Liu, C. L.; Luo, S. H.; Huang, H. B.; Wang, Z. Y.; Hao, A. M.; Zhai, Y. C.; Wang, Z. W. K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery. Electrochem. Commun. 2017, 82, 150.154.

    Article  CAS  Google Scholar 

  36. Sada, K.; Barpanda, P. P3-type layered K0.48Mn0.4Co0.6O2: A novel cathode material for potassium-ion batteries. Chem. Commun. 2020, 56, 2272–2275.

    Article  CAS  Google Scholar 

  37. Chong, S. K.; Wu, Y. F.; Chen, Y. Z.; Guo, S. W.; Tai, Z. G.; Shu, C. Y.; Tan, Q.; Sun, J. J.; Liu, Y. N. Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries. Electrochim. Acta 2019, 293, 299–306.

    Article  CAS  Google Scholar 

  38. Lin, J.; Li, L.; Fan, E. S.; Liu, C. W.; Zhang, X. D.; Cao, H. B.; Sun, Z.; Chen, R. J. Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting. ACS Appl. Mater. Interfaces 2020, 12, 18482–18489.

    Article  CAS  Google Scholar 

  39. Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Low-cost layered K0.45Mn0.9Mg0.1O2 as a high-performance cathode material for K-ion batteries. Chem Electro Chem 2019, 6, 2308–2315.

    CAS  Google Scholar 

  40. Weng, J. Y.; Duan, J.; Sun, C. L.; Liu, P.; Li, A. X.; Zhou, P. F.; Zhou, J. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.

    Article  CAS  Google Scholar 

  41. Deng, L. Q.; Wang, T. S.; Hong, Y. R.; Feng, M. Y.; Wang, R. T.; Zhang, J.; Zhang, Q. F.; Wang, J. W.; Zeng, L.; Zhu, Y. J. et al. A nonflammable electrolyte enabled high performance K0.5MnO2 cathode for low-cost potassium-ion batteries. ACS Energy Lett. 2020, 5, 1916–1922.

    Article  CAS  Google Scholar 

  42. Wang, X. P.; Xu, X. M.; Niu, C. J.; Meng, J. S.; Huang, M.; Liu, X.; Liu, Z. A.; Mai, L. Q. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 2017, 17, 544–550.

    Article  CAS  Google Scholar 

  43. Lu, Z. H.; Dahn, J. R. In situ X-ray diffraction study of P2- Na2/3[Ni1/3Mn2/3]O2. J. Electrochem. Soc. 2001, 148, A1225–A1229.

    Article  CAS  Google Scholar 

  44. Lin, B. W.; Zhu, X. H.; Fang, L. Z.; Liu, X. Y.; Li, S.; Zhai, T.; Xue, L.; Guo, Q. B.; Xu, J.; Xia, H. Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries. Adv. Mater. 2019, 31, 1900060.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51972030 and 51772030), the S&T Major Project of Inner Mongolia Autonomous Region in China (2020ZD0018), Beijing Outstanding Young Scientists Program (BJJWZYJH01201910007023), and Guangdong Key Laboratory of Battery Safety (2019B121203008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Xue, Q., Lin, J. et al. Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries. Nano Res. 15, 3143–3149 (2022). https://doi.org/10.1007/s12274-021-3863-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3863-4

Keywords

Navigation