Skip to main content
Log in

A potassium/chloride ion co-doped cathode material Li1.18K0.02Ni0.2Mn0.6O1.98Cl0.02 with enhanced electrochemical performance for lithium ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li-rich layered oxide has drawn attention due to its high capacity, low cost and environmental friendliness. However, its application as cathode material of lithium ion battery is impeded by its poor rate and cycling performance. In this work, a K, Cl co-doped Li-rich layered cathode material Li1.18K0.02Ni0.2Mn0.6O1.98Cl0.02 (LLO-KCl) was successfully synthesized via a rapid nucleation followed by hydrothermal method. The resulting LLO-KCl cathode material was investigated using X-ray diffraction, scanning electron microscopies, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge tests. For comparison, Li1.2Ni0.2Mn0.6O2 (LLO) samples were prepared under the same condition. LLO-KCl delivered the initial discharge capacity of 265.1 mAh g−1 at a rate of 0.1 C and the capacity retention of 88.4% at 1 C after 100 cycles. Even at the rate of 10 C, the specific capacity was 98.9 mAh g−1. The enhanced electrochemical performance was mainly benefited from expanded Li+ migration path and stabilized crystal lattice via K+ and Cl simultaneously doped into crystal structure. This finding provides a strategy to explore a cathode material to build high specific battery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Armand, J.M. Tarascon, J. Nat. 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  2. H.K. Song, K.T. Lee, M.G. Kim, J. Adv. Funct. Mater. 20, 3818–3834 (2010)

    Article  CAS  Google Scholar 

  3. J.B. Goodenough, Y. Kim, J. Chem. Mater. 22, 587–603 (2010)

    Article  CAS  Google Scholar 

  4. J. Zheng, P. Xu, M. Gu et al., J. Chem. Mater. 27, 1381–1390 (2015)

    Article  CAS  Google Scholar 

  5. T. Zhao, L. Li, R. Chen, J. Nano Energy 15, 164–176 (2015)

    Article  CAS  Google Scholar 

  6. H. Yu, H. Zhou, J. Phys. Chem. Lett. 4, 1268–1280 (2013)

    Article  CAS  Google Scholar 

  7. X. Xing, R. Liu, S. Liu, J. Electrochimica Acta 194, 310–316 (2016)

    Article  CAS  Google Scholar 

  8. C. Yin, H. Zhou, Z. Yang, J. ACS Appl. Mater. Interfaces 10, 13625–13634 (2018)

    Article  CAS  Google Scholar 

  9. X. Bian, Q. Fu, X. Bie, J. Electrochim. Acta 174, 875–884 (2015)

    Article  CAS  Google Scholar 

  10. T. Zhao, S. Chen, R. Chen, J. ACS Appl. Mater. Interfaces 6, 21711–21720 (2014)

    Article  CAS  Google Scholar 

  11. K. Amine, I. Belharouak, Z. Chen, J. Adv. Mater. 22, 3052–3057 (2010)

    Article  CAS  Google Scholar 

  12. Q. Ma, R. Li, R. Zheng, J. Power Sources 331, 112–121 (2016)

    Article  CAS  Google Scholar 

  13. W. Yan, Y. Xie, J. Jiang, J. ACS Sustain. Chem. Eng. 6, 4625–4632 (2018)

    Article  CAS  Google Scholar 

  14. J.H. Song, A. Kapylou, H.S. Choi, J. Power Sources 313, 65–72 (2016)

    Article  CAS  Google Scholar 

  15. Q. Li, G. Li, C. Fu, J. ACS Appl. Mater. Interfaces 6, 10330–10341 (2014)

    Article  CAS  Google Scholar 

  16. H. Yan, B. Li, Z. Yu, J. Phys. Chem. C 121, 7155–7163 (2017)

    Article  CAS  Google Scholar 

  17. J. Gao, A. Manthiram, J. Power Sources 191, 644–647 (2009)

    Article  CAS  Google Scholar 

  18. J.S. Kim, C.S. Johnson, J.T. Vaughey, J. Chem. Mater. 16, 1996–2006 (2004)

    Article  CAS  Google Scholar 

  19. X. Yuan, Q.J. Xu, C. Wang, J. Power Sources 279, 157–164 (2015)

    Article  CAS  Google Scholar 

  20. Z. Zheng, X. Guo, Y. Zhong, J. Electrochim. Acta 188, 336–343 (2016)

    Article  CAS  Google Scholar 

  21. W. Kim, D. Han, W. Ryu, J. Alloys Compds. 592, 48–52 (2014)

    Article  CAS  Google Scholar 

  22. S. Singh, A.K. Raj, R. Sen, J. ACS Appl. Mater. Interfaces 9, 26885–26896 (2017)

    Article  CAS  Google Scholar 

  23. Y. Wu, L. Xie, X. He, J. Electrochim. Acta 265, 115–120 (2018)

    Article  CAS  Google Scholar 

  24. S. Hy, F. Felix, J. Rick, J. Am. Soc. 136, 999–1007 (2014)

    Article  CAS  Google Scholar 

  25. N. Yabuuchi, K. Yoshii, S.T. Myung, J. Am. Chem. Soc. 133, 4404–4419 (2011)

    Article  CAS  Google Scholar 

  26. H. Liu, J. Huang, D. Qian, J. J. Electrochem. Soc. 163, A971–A973 (2016)

    Article  CAS  Google Scholar 

  27. X. Li, F. Kang, W. Shen, J. Electrochim. Acta 53, 1761–1765 (2008)

    Article  Google Scholar 

  28. W. Yan, J. Jiang, W. Liu, J. Electrochim. Acta 212, 16–24 (2016)

    Article  CAS  Google Scholar 

  29. C. Zhan, T. Wu, J. Lu, J. Energy Environ. Sci. 11, 243–257 (2018)

    Article  CAS  Google Scholar 

  30. A. Tang, X. Wang, G. Xu, J. Mater. Lett. 63, 2396–2398 (2009)

    Article  CAS  Google Scholar 

  31. T. Yi, Y. Li, S. Yang, J. ACS Appl. Mater. Interfaces 8, 32349–32359 (2016)

    Article  CAS  Google Scholar 

  32. B. Li, C. Han, Y.B. He, J. Energy Environ. Sci. 5, 9595–9602 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 51371198) and Technology Project of Changsha (Grant No. K1202039-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Zhou or Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Guan, H., Yin, C. et al. A potassium/chloride ion co-doped cathode material Li1.18K0.02Ni0.2Mn0.6O1.98Cl0.02 with enhanced electrochemical performance for lithium ion batteries. J Mater Sci: Mater Electron 31, 572–580 (2020). https://doi.org/10.1007/s10854-019-02561-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02561-w

Navigation