Skip to main content
Log in

One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silver nanowire (AgNW) based transparent electrode (TE) plays a pivotal role in optoelectronics where TE is generally required to have fine pattern and high performance. Despite the rapid technological advances in either welding or patterning of AgNWs, there are few studies that combine the two processes in a simple and practical manner. Here, aiming to fabricate high-performance patterned AgNW TE, we develop a simplified photolithography that enables both plasmonic nanowelding with low-level UV exposure (20 mW/cm2) and high-resolution micropatterning without photoresist and etching process by conjugating AgNW with diphenyliodonium nitrate (DPIN) and UV-curable cellulose. The cellulose as a binder can effectively enhance plasmonic heating, adhesion, and stability, while the photosensitive DPIN, capable of modulating surface atom diffusion, can boost the plasmonic welding at AgNW junction and induce patterning in AgNW network with Plateau-Rayleigh instability. The fabricated AgNW TE has high figure of merit of up to 1, 000 (3.7 Ω/sq at 90% transmittance) and minimal pattern size down to 3 µm, along with superior robustness. Finally, a flexible smart window with high performance is demonstrated using the patterned and welded AgNW TEs, verifying the applicability of the simplified photolithography technique to optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. K.; Ng, S. W.; Lu, X.; Zheng, Z. J. Solution-processed transparent electrodes for emerging thin-film solar cells. Chem. Rev.2020, 120, 2049–2122.

    Article  CAS  Google Scholar 

  2. Azani, M. R.; Hassanpour, A.; Torres, T. Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)-free flexible solar cells. Adv. Energy Mater.2020, 10, 2002536.

    Article  CAS  Google Scholar 

  3. Chang, I.; Park, T.; Lee, J.; Lee, M. H.; Ko, S. H.; Cha, S. W. Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J. Mater. Chem. A2013, 1, 8541–8546.

    Article  CAS  Google Scholar 

  4. Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano2020, 14, 2927–2938.

    Article  CAS  Google Scholar 

  5. Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano2020, 14, 8754–8765.

    Article  CAS  Google Scholar 

  6. Kang, S.; Cho, S.; Shanker, R.; Lee, H.; Park, J.; Um, D. S.; Lee, Y.; Ko, H. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones. Sci. Adv.2018, 4, eaas8772.

    Article  CAS  Google Scholar 

  7. Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano2020, 14, 16643–16653.

    Article  CAS  Google Scholar 

  8. Gao, Q.; Kopera, B. A. F.; Zhu, J.; Liao, X. J.; Gao, C.; Retsch, M.; Agarwal, S.; Greiner, A. Breathable and flexible polymer membranes with mechanoresponsive electric resistance. Adv. Funct. Mater.2020, 30, 1907555.

    Article  CAS  Google Scholar 

  9. Shi, X. L.; Wang, H. K.; Xie, X. T.; Xue, Q. W.; Zhang, J. Y.; Kang, S. Q.; Wang, C. H.; Liang, J. J.; Chen, Y. S. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale “brick-and-mortar” architecture. ACS Nano2019, 13, 649–659.

    Article  CAS  Google Scholar 

  10. Li, M.; Chen, S. J.; Fan, B. Y.; Wu, B. Y.; Guo, X. J. Printed flexible strain sensor array for bendable interactive surface. Adv. Funct. Mater.2020, 30, 2003214.

    Article  CAS  Google Scholar 

  11. Huang, S. Y.; Liu, Y. N.; Jafari, M.; Siaj, M.; Wang, H. N.; Xiao, S. Y.; Ma, D. L. Highly stable Ag-Au core-shell nanowire network for ITO-free flexible organic electrochromic device. Adv. Funct. Mater.2021, 31, 2010022.

    Article  CAS  Google Scholar 

  12. Kim, H.; Lee, H.; Ha, I.; Jung, J.; Won, P.; Cho, H.; Yeo, J.; Hong, S.; Han, S.; Kwon, J. et al. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater.2018, 28, 1801847.

    Article  Google Scholar 

  13. Kang, H.; Zhao, C. L.; Huang, J. R.; Ho, D. H.; Megra, Y. T.; Suk, J. W.; Sun, J.; Wang, Z. L.; Sun, Q. J.; Cho, J. H. Fingerprint-inspired conducting hierarchical wrinkles for energy-harvesting E-skin. Adv. Funct. Mater.2019, 29, 1903580.

    Article  CAS  Google Scholar 

  14. Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S. H. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network. Nano Lett.2017, 17, 4339–4346.

    Article  CAS  Google Scholar 

  15. Lee, H. E.; Park, J. H.; Kim, T. J.; Im, D.; Shin, J. H.; Kim, D. H.; Mohammad, B.; Kang, I. S.; Lee, K. J. Novel electronics for flexible and neuromorphic computing. Adv. Funct. Mater.2018, 28, 1801690.

    Article  Google Scholar 

  16. Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale2012, 4, 6408–6414.

    Article  CAS  Google Scholar 

  17. Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater.2015, 27, 4744–4751.

    Article  CAS  Google Scholar 

  18. Song, T. B.; Chen, Y.; Chung, C. H.; Yang, Y.; Bob, B.; Duan, H. S.; Li, G.; Tu, K. N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano2014, 2, 2804–2811.

    Article  Google Scholar 

  19. Selzer, F.; Floresca, C.; Kneppe, D.; Bormann, L.; Sachse, C.; Weiß, N.; Eychmüller, A.; Amassian, A.; Müller-Meskamp, L.; Leo, K. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance. Appl. Phys. Lett.2016, 108, 163302.

    Article  Google Scholar 

  20. Chen, G. N.; Bi, L. L.; Yang, Z. L.; Chen, L. J.; Wang, G. X.; Ye, C. H. Water-based purification of ultrathin silver nanowires toward transparent conductive films with a transmittance higher than 99%. ACS Appl. Mater. Interfaces2019, 11, 22648–22654.

    Article  CAS  Google Scholar 

  21. Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater.2011, 23, 2905–2910.

    Article  CAS  Google Scholar 

  22. Seo, J. H.; Hwang, I.; Um, H. D.; Lee, S.; Lee, K.; Park, J.; Shin, H.; Kwon, T. H.; Kang, S. J.; Seo, K. Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater.2017, 29, 1701479.

    Article  Google Scholar 

  23. Yoon, S. S.; Khang, D. Y. Room-temperature chemical welding and sintering of metallic nanostructures by capillary condensation. Nano Lett.2016, 16, 3550–3556.

    Article  CAS  Google Scholar 

  24. Sun, Y. N.; Chang, M. J.; Meng, L. X.; Wan, X. J.; Gao, H. H.; Zhang, Y. M.; Zhao, K.; Sun, Z. H.; Li, C. X.; Liu, S. R. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron.2019, 2, 513–520.

    Article  CAS  Google Scholar 

  25. Liu, Y.; Zhang, J. M.; Gao, H.; Wang, Y.; Liu, Q. X.; Huang, S. Y.; Guo, C. F.; Ren, Z. F. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett.2017, 17, 1090–1096.

    Article  CAS  Google Scholar 

  26. Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater.2012, 11, 241–249.

    Article  CAS  Google Scholar 

  27. Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M. Y. et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater.2014, 26, 5808–5814.

    Article  CAS  Google Scholar 

  28. Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D. et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater.2014, 24, 5671–5678.

    Article  CAS  Google Scholar 

  29. Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater.2013, 23, 4171–4176.

    Article  CAS  Google Scholar 

  30. Aghazadehchors, S.; Nguyen, V. H.; Muñoz-Rojas, D.; Jiménez, C.; Rapenne, L.; Nguyen, N. D.; Bellet, D. Versatility of bilayer metal oxide coatings on silver nanowire networks for enhanced stability with minimal transparency loss. Nanoscale2019, 11, 19969–19979.

    Article  CAS  Google Scholar 

  31. Chung, W. H.; Jang, Y. R.; Hwang, Y. T.; Kim, S. H.; Kim, H. S. The surface plasmonic welding of silver nanowires via intense pulsed light irradiation combined with NIR for flexible transparent conductive films. Nanoscale2020, 12, 17725–17737.

    Article  CAS  Google Scholar 

  32. Park, J. H.; Hwang, G. T.; Kim, S.; Seo, J.; Park, H. J.; Yu, K.; Kim, T. S.; Lee, K. J. Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater.2017, 29, 1603473.

    Article  Google Scholar 

  33. Park, J. H.; Han, S.; Kim, D.; You, B. K.; Joe, D. J.; Hong, S.; Seo, J.; Kwon, J.; Jeong, C. K.; Park, H. J. et al. Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater.2017, 27, 1701138.

    Article  Google Scholar 

  34. Wang, J.; Chen, H.; Zhao, Y.; Zhong, Z. B.; Tang, Y.; Liu, G. Z.; Feng, X.; Xu, F. C.; Chen, X. H.; Cai, D. J. et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits. ACS Appl. Mater. Interfaces2020, 12, 35211–35221.

    Article  CAS  Google Scholar 

  35. Jang, Y. R.; Chung, W. H.; Hwang, Y. T.; Hwang, H. J.; Kim, S. H.; Kim, H. S. Selective wavelength plasmonic flash light welding of silver nanowires for transparent electrodes with high conductivity. ACS Appl. Mater. Interfaces2018, 10, 24099–24107.

    Article  CAS  Google Scholar 

  36. Liang, X. W.; Lu, J. B.; Zhao, T.; Yu, X. C.; Jiang, Q. S.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Facile and efficient welding of silver nanowires based on UVA-induced nanoscale photothermal process for roll-to-roll manufacturing of high-performance transparent conducting films. Adv. Mater. Interfaces2019, 6, 1801635.

    Google Scholar 

  37. Chung, W. H.; Park, S. H.; Joo, S. J.; Kim, H. S. UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Res.2018, 11, 2190–2203.

    Article  CAS  Google Scholar 

  38. Zhong, Z. Y.; Lee, S. H.; Ko, P.; Kwon, S.; Youn, H.; Seok, J. Y.; Woo, K. Control of thermal deformation with photonic sintering of ultrathin nanowire transparent electrodes. Nanoscale2020, 12, 2366–2373.

    Article  CAS  Google Scholar 

  39. Fang, Y. S.; Ding, K.; Wu, Z. C.; Chen, H. T.; Li, W. B.; Zhao, S.; Zhang, Y. L.; Wang, L.; Zhou, J.; Hu, B. Architectural engineering of nanowire network fine pattern for 30 µm wide flexible quantum dot light-emitting diode application. ACS Nano2016, 10, 10023–10030.

    Article  CAS  Google Scholar 

  40. Jun, S.; Kim, S. O.; Lee, H. J.; Han, C. J.; Lee, C. J.; Yu, Y. T.; Lee, C. R.; Ju, B. K.; Kim, Y.; Kim, J. W. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds. J. Mater. Chem. A2019, 7, 3101–3111.

    Article  CAS  Google Scholar 

  41. Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire-acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces2020, 12, 47729–47738.

    Article  CAS  Google Scholar 

  42. Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater.2021, 31, 2010155.

    Article  CAS  Google Scholar 

  43. Um, D. S.; Lee, Y.; Kim, T.; Lim, S.; Lee, H.; Ha, M.; Khan, Z.; Kang, S.; Kim, M. P.; Kim, J. Y. et al. High-resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices. ACS Appl. Mater. Interfaces2020, 12, 32154–32162.

    Article  CAS  Google Scholar 

  44. Tybrandt, K.; Vörös, J. Fast and efficient fabrication of intrinsically stretchable multilayer circuit boards by wax pattern assisted filtration. Small2016, 12, 180–184.

    Article  CAS  Google Scholar 

  45. Park, J.; Kim, G.; Lee, B.; Lee, S.; Won, P.; Yoon, H.; Cho, H.; Ko, S. H.; Hong, Y. Highly customizable transparent silver nanowire patterning via inkjet-printed conductive polymer templates formed on various surfaces. Adv. Mater. Technol.2020, 5, 2000042.

    Article  CAS  Google Scholar 

  46. Wan, T.; Guan, P. Y.; Guan, X. W.; Hu, L.; Wu, T.; Cazorla, C.; Chu, D. W. Facile patterning of silver nanowires with controlled polarities via inkjet-assisted manipulation of interface adhesion. ACS Appl. Mater. Interfaces2020, 12, 34086–34094.

    Article  CAS  Google Scholar 

  47. Ko, D.; Gu, B.; Kang, S. J.; Jo, S.; Hyun, D. C.; Kim, C. S.; Kim, J. Critical work of adhesion for economical patterning of silver nanowire-based transparent electrodes. J. Mater. Chem. A2019, 7, 14536–14544.

    Article  CAS  Google Scholar 

  48. Li, W. W.; Meredov, A.; Shamim, A. Coat-and-print patterning of silver nanowires for flexible and transparent electronics. npj Flex. Electron.2019, 3, 19.

    Article  CAS  Google Scholar 

  49. Park, K.; Woo, K.; Kim, J.; Lee, D.; Ahn, Y.; Song, D. H; Kim, H.; Oh, D.; Kwon, S.; Lee, Y. High-resolution and large-area patterning of highly conductive silver nanowire electrodes by reverse offset printing and intense pulsed light irradiation. ACS Appl. Mater. Interfaces2019, 11, 14882–14891.

    Article  CAS  Google Scholar 

  50. Peng, Y. Y.; Du, B. Y.; Xu, X. W.; Yang, J. L.; Lin, J.; Ma, C. Q. Transparent triboelectric sensor arrays using gravure printed silver nanowire electrodes. Appl. Phys. Express2019, 12, 066503.

    Article  CAS  Google Scholar 

  51. Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. P. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale2016, 8, 5507–5515.

    Article  CAS  Google Scholar 

  52. Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces2020, 12, 24074–24085.

    Article  CAS  Google Scholar 

  53. Jin, H. M.; Park, D. Y.; Jeong, S. J.; Lee, G. Y.; Kim, J. Y.; Mun, J. H.; Cha, S. K.; Lim, J.; Kim, J. S.; Kim, K. H. et al. Flash light millisecond self-assembly of high χ block copolymers for wafer-scale sub-10 nm nanopatterning. Adv. Mater.2017, 29, 1700595.

    Article  Google Scholar 

  54. Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem. Mater.2002, 14, 4736–4745.

    Article  CAS  Google Scholar 

  55. Zhong, L.; Sansoz, F.; He, Y.; Wang, C. M.; Zhang, Z.; Mao, S. X. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat. Mater.2017, 16, 439–445.

    Article  CAS  Google Scholar 

  56. Liu, G. S.; Xu, Y. W.; Kong, Y. F.; Wang, L.; Wang, J.; Xie, X.; Luo, Y. H.; Yang, B. R. Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Interfaces2018, 10, 37699–37708.

    Article  CAS  Google Scholar 

  57. Takahata, R.; Yamazoe, S.; Warakulwit, C.; Limtrakul, J.; Tsukuda, T. Rayleigh instability and surfactant-mediated stabilization of ultrathin gold nanorods. J. Phys. Chem. C2016, 120, 17006–17010.

    Article  CAS  Google Scholar 

  58. Patil, K. C.; Rao, C. N. R.; Lacksonen, J. W.; Dryden, C. E. The silver nitrate-iodine reaction: Iodine nitrate as the reaction intermediate. J. Inorg. Nucl. Chem.1967, 29, 407–412.

    Article  CAS  Google Scholar 

  59. Nichols, F. A. On the spheroidization of rod-shaped particles of finite length. J. Mater. Sci.1976, 11, 1077–1082.

    Article  Google Scholar 

  60. Lu, H. F.; Zhang, D.; Ren, X. G.; Liu, J.; Choy, W. C. H. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode. ACS Nano2014, 8, 10980–10987.

    Article  CAS  Google Scholar 

  61. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol.2010, 5, 574–578.

    Article  CAS  Google Scholar 

  62. Huang, Y. L.; Tian, Y. H.; Hang, C. J.; Liu, Y. B.; Wang, S.; Qi, M. M.; Zhang, H.; Zhao, J. Self-limited nanosoldering of silver nanowires for high-performance flexible transparent heaters. ACS Appl. Mater. Interfaces2019, 11, 21850–21858.

    Article  CAS  Google Scholar 

  63. Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater.2018, 28, 1705409.

    Article  Google Scholar 

  64. Maurer, J. H. M.; González-García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano Lett.2016, 16, 2921–2925.

    Article  CAS  Google Scholar 

  65. Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv.2018, 4, eaap9264.

    Article  Google Scholar 

  66. Hu, X. T.; Meng, X. C.; Zhang, L.; Zhang, Y. Y.; Cai, Z. R.; Huang, Z. Q.; Su, M.; Wang, Y.; Li, M. Z.; Li, F. Y. et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule2019, 3, 2205–2218.

    Article  CAS  Google Scholar 

  67. Barnes, T. M.; Reese, M. O.; Bergeson, J. D.; Larsen, B. A.; Blackburn, J. L.; Beard, M. C.; Bult, J.; van de Lagemaat, J. Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides. Adv. Energy Mater.2012, 2, 353–360.

    Article  CAS  Google Scholar 

  68. Xue, Z. G.; Xu, M. K.; Zhao, Y. L.; Wang, J.; Jiang, X. F.; Yu, L. W.; Wang, J. Z.; Xu, J.; Shi, Y.; Chen, K. J. et al. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation. Nat. Commun.2016, 7, 12836.

    Article  CAS  Google Scholar 

  69. Shin, K.; Park, J. S.; Han, J. H.; Choi, Y.; Chung, D. S.; Kim, S. H. Patterned transparent electrode with a continuous distribution of silver nanowires produced by an etching-free patterning method. Sci. Rep.2017, 7, 40087.

    Article  CAS  Google Scholar 

  70. Kim, D. J.; Hwang, D. Y.; Park, J. Y.; Kim, H. K. Liquid crystal-based flexible smart windows on roll-to-roll slot die-coated Ag nanowire network films. J. Alloys Compd.2018, 765, 1090–1098.

    Article  CAS  Google Scholar 

  71. Khaligh, H. H.; Liew, K.; Han, Y. N.; Abukhdeir, N. M.; Goldthorpe, I. A. Silver nanowire transparent electrodes for liquid crystal-based smart windows. Sol. Energy Mater. Sol. Cells2015, 132, 337–341.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 61904067, 61805108, 61575084, and 62075088), Science and Technology Projects in Guangzhou (No. 202102020758), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011498), Science & Technology Project of Guangzhou City (No. 201807010077), Key-Area Research and Development Program of Guangdong Province (No. 2019B010934001), and the Fundamental Research Funds for the Central Universities (Nos. 21621405 and 21620328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Ru Yang or Yunhan Luo.

Electronic Supplementary Material

12274_2021_3796_MOESM1_ESM.pdf

One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GS., Wang, T., Wang, Y. et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res. 15, 2582–2591 (2022). https://doi.org/10.1007/s12274-021-3796-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3796-y

Keywords

Navigation