Skip to main content
Log in

Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Patterned silver nanowire (AgNW) networks have been widely used as transparent electrodes in many optoelectrical devices. However, obvious patterning visibility and poor thermostability of AgNW are still limiting its practical application. Herein, we report self-assembled monolayer (SAM) modulated Plateau-Rayleigh instability (PRI) of AgNW, which allows invisible patterning and superior stability of the AgNW network. Two opposite effects of different SAMs on the PRI are identified: the alkanethiol SAMs activate surface atom diffusion while the mercaptobenzoheterocyclic (MBH) SAMs suppress the diffusion. The degradation temperature of the AgNWs can be therefore, for the first time, tuned in the range of 193–381 °C, so that the AgNW network can be patterned via PRI with a tiny optical difference between the insulative and conductive regions, i.e., patterning invisible. Besides, the MBH SAMs provide AgNW with excellent durability under thermal annealing and oxidation, which enhances the maximum heating temperature of the AgNW transparent heater by over 120 °C. Beyond the micro-patterning, we consider that the developed SAM strategy can be extended to other metal nanowires for stability improvement and has huge potential in nanoengineering of one-dimensional metal materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, G. S.; Qiu, J. S.; Xu, D. H.; Zhou, X. Z.; Zhong, D. Y.; Shieh, H. P. D.; Yang, B. R. Fabrication of embedded silver nanowires on arbitrary substrates with enhanced stability via chemisorbed alkanethiolate. ACS Appl. Mater. Interfaces 2017, 9, 15130–15138.

    Article  CAS  Google Scholar 

  2. He, Z.; Wang, L.; Liu, G. S.; Xu, Y. W.; Qiu, Z. G.; Zhong, M.; Li, X. D.; Gui, X. C.; Lin, Y. S.; Qin, Z. et al. Constructing electrophoretic displays on foldable paper-based electrodes by a facile transferring method. ACS Appl. Electron. Mater. 2020, 2, 1335–1342.

    Article  CAS  Google Scholar 

  3. Cairns, D. R.; Witte II, R. P.; Sparacin, D. K.; Sachsman, S. M.; Paine, D. C.; Crawford, G. P.; Newton, R. R. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 2000, 76, 1425–1427.

    Article  CAS  Google Scholar 

  4. Li, W. T.; Zhang, H.; Shi, S. W.; Xu, J. X.; Qin, X.; He, Q. Q.; Yang, K. C.; Dai, W. B.; Liu, G.; Zhou, Q. G. et al. Recent progress in silver nanowire networks for flexible organic electronics. J. Mater. Chem. C 2020, 8, 4636–4674.

    Article  CAS  Google Scholar 

  5. Kim, S.; Kim, S. Y.; Kim, J.; Kim, J. H. Highly reliable AgNW/PEDOT: PSS hybrid films: Efficient methods for enhancing transparency and lowering resistance and haziness. J. Mater. Chem. C 2014, 2, 5636–5643.

    Article  CAS  Google Scholar 

  6. Cho, E. H.; Hwang, J.; Kim, J.; Lee, J.; Kwak, C.; Lee, C. S. Low-visibility patterning of transparent conductive silver-nanowire films. Opt. Express 2015, 23, 26095–26103.

    Article  CAS  Google Scholar 

  7. Yoo, B.; Kim, Y.; Han, C. J.; Oh, M. S.; Kim, J. W. Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode. Appl. Surf. Sci. 2018, 429, 151–157.

    Article  CAS  Google Scholar 

  8. Ko, D.; Gu, B.; Kang, S. J.; Jo, S.; Hyun, D. C.; Kim, C. S.; Kim, J. Critical work of adhesion for economical patterning of silver nanowire-based transparent electrodes. J. Mater. Chem. A 2019, 7, 14536–14544.

    Article  CAS  Google Scholar 

  9. Wan, T.; Guan, P. Y.; Guan, X. W.; Hu, L.; Wu, T.; Cazorla, C.; Chu, D. W. Facile patterning of silver nanowires with controlled polarities via inkjet-assisted manipulation of interface adhesion. ACS Appl. Mater. Interfaces 2020, 12, 34086–34094.

    Article  CAS  Google Scholar 

  10. Park, J.; Kim, G.; Lee, B.; Lee, S.; Won, P.; Yoon, H.; Cho, H.; Ko, S. H.; Hong, Y. Highly customizable transparent silver nanowire patterning via inkjet-printed conductive polymer templates formed on various surfaces. Adv. Mater. Technol. 2020, 5, 2000042.

    Article  CAS  Google Scholar 

  11. Liu, G. S.; Yang, F.; Xu, J. Z.; Kong, Y. F.; Zheng, H. J.; Chen, L.; Chen, Y. F.; Wu, M. X.; Yang, B. R.; Luo, Y. H. et al. Ultrasonically patterning silver nanowire-acrylate composite for highly sensitive and transparent strain sensors based on parallel cracks. ACS Appl. Mater. Interfaces 2020, 12, 47729–47738.

    Article  CAS  Google Scholar 

  12. Liu, G. S.; Wang, T.; Wang, Y. X.; Zheng, H. J.; Chen, Y. S.; Zeng, Z. J.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3796-y.

  13. Finn, D. J.; Lotya, M.; Coleman, J. N. Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 2015, 7, 9254–9261.

    Article  CAS  Google Scholar 

  14. Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. P. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 2016, 8, 5507–5515.

    Article  CAS  Google Scholar 

  15. Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 2010, 3, 564–573.

    Article  CAS  Google Scholar 

  16. Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

    Article  CAS  Google Scholar 

  17. Xu, X. W.; Liu, Z. F.; He, P.; Yang, J. L. Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. J. Phys. D: Appl. Phys. 2019, 52, 455401.

    Article  CAS  Google Scholar 

  18. Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986–5996.

    Article  CAS  Google Scholar 

  19. Um, D. S.; Lee, Y.; Kim, T.; Lim, S.; Lee, H.; Ha, M.; Khan, Z.; Kang, S.; Kim, M. P.; Kim, J. Y. et al. High-resolution filtration patterning of silver nanowire electrodes for flexible and transparent optoelectronic devices. ACS Appl. Mater. Interfaces 2020, 12, 32154–32162.

    Article  CAS  Google Scholar 

  20. Yang, M.; Kim, S. W.; Zhang, S. Y.; Park, D. Y.; Lee, C. W.; Ko, Y. H.; Yang, H. F.; Xiao, Y.; Chen, G.; Li, M. Y. Facile and highly efficient fabrication of robust Ag nanowire-elastomer composite electrodes with tailored electrical properties. J. Mater. Chem. C 2018, 6, 7207–7218.

    Article  CAS  Google Scholar 

  21. Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.

    Article  Google Scholar 

  22. Preston, C.; Xu, Y. L.; Han, X. G.; Munday, J. N.; Hu, L. B. Optical haze of transparent and conductive silver nanowire films. Nano Res. 2013, 6, 461–468.

    Article  CAS  Google Scholar 

  23. Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.

    Article  CAS  Google Scholar 

  24. Hwang, J.; Lee, H.; Woo, Y. Enhancing the optical properties of silver nanowire transparent conducting electrodes by the modification of nanowire cross-section using ultra-violet illumination. J. Appl. Phys. 2016, 120, 174903.

    Article  Google Scholar 

  25. Kumar, A.; Vidhyadhiraja, N. S.; Kulkarni, G. U. Current distribution in conducting nanowire networks. J. Appl. Phys. 2017, 122, 045101.

    Article  Google Scholar 

  26. Wan, T.; Pan, Y.; Du, H. W.; Qu, B.; Yi, J. B.; Chu, D. W. Threshold switching induced by controllable fragmentation in silver nanowire networks. ACS Appl. Mater. Interfaces 2018, 10, 2716–2724.

    Article  CAS  Google Scholar 

  27. Chae, W. H.; Sannicolo, T.; Grossman, J. C. Double-Sided graphene oxide encapsulated silver nanowire transparent electrode with improved chemical and electrical stability. ACS Appl. Mater. Interfaces 2020, 12, 17909–17920.

    Article  CAS  Google Scholar 

  28. Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

    Article  CAS  Google Scholar 

  29. Chen, D.; Liang, J. J.; Liu, C.; Saldanha, G.; Zhao, F. C.; Tong, K.; Liu, J.; Pei, Q. B. Thermally stable silver nanowire-polyimide transparent electrode based on atomic layer deposition of zinc oxide on silver nanowires. Adv. Funct. Mater. 2015, 25, 7512–7520.

    Article  Google Scholar 

  30. Day, R. W.; Mankin, M. N.; Gao, R. X.; No, Y. S.; Kim, S. K.; Bell, D. C.; Park, H. G.; Lieber, C. M. Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. Nat. Nanotechnol. 2015, 11, 345–352.

    Article  Google Scholar 

  31. Xue, Z. G.; Xu, M. K.; Zhao, Y. L.; Wang, J.; Jiang, X. F.; Yu, L. W.; Wang, J. Z.; Xu, J.; Shi, Y.; Chen, K. J. et al. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation. Nat. Commun. 2016, 7, 12836.

    Article  CAS  Google Scholar 

  32. Ciuculescu, D.; Dumestre, F.; Comesaña-Hermo, M.; Chaudret, B.; Spasova, M.; Farle, M.; Amiens, C. Single-crystalline Co nanowires: Synthesis, thermal stability, and carbon coating. Chem. Mater. 2009, 21, 3987–3995.

    Article  CAS  Google Scholar 

  33. Huber, S. E.; Warakulwit, C.; Limtrakul, J.; Tsukuda, T.; Probst, M. Thermal stabilization of thin gold nanowires by surfactant-coating: A molecular dynamics study. Nanoscale 2012, 4, 585–590.

    Article  CAS  Google Scholar 

  34. Takahata, R.; Yamazoe, S.; Warakulwit, C.; Limtrakul, J.; Tsukuda, T. Rayleigh instability and surfactant-mediated stabilization of ultrathin gold nanorods. J. Phys. Chem. C 2016, 120, 17006–17010.

    Article  CAS  Google Scholar 

  35. Song, M.; Kartawira, K.; Hillaire, K. D.; Li, C.; Eaker, C. B.; Kiani, A.; Daniels, K. E.; Dickey, M. D. Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. Proc. Natl. Acad. Sci. USA 2020, 117, 19026–19032.

    Article  CAS  Google Scholar 

  36. Bettscheider, S.; Kraus, T.; Fleck, N. A. On the geometric stability of an inorganic nanowire and an organic ligand shell. J. Mech. Phys. Solids 2019, 123, 3–19.

    Article  CAS  Google Scholar 

  37. Bantz, K. C.; Nelson, H. D.; Haynes, C. L. Plasmon-enabled study of self-assembled alkanethiol ordering on roughened ag substrates. J. Phys. Chem. C 2012, 116, 3585–3593.

    Article  CAS  Google Scholar 

  38. Finšgar, M.; Kek Merl, D. An electrochemical, long-term immersion, and XPS study of 2-mercaptobenzothiazole as a copper corrosion inhibitor in chloride solution. Corros. Sci. 2014, 83, 164–175.

    Article  Google Scholar 

  39. Finšgar, M. Surface analysis of the 2-mercaptobenzothiazole corrosion inhibitor on 6082 aluminum alloy using ToF-SIMS and XPS. Anal. Methods 2020, 12, 456–465.

    Article  Google Scholar 

  40. Vernack, E.; Costa, D.; Tingaut, P.; Marcus, P. DFT studies of 2-mercaptobenzothiazole and 2-mercaptobenzimidazole as corrosion inhibitors for copper. Corros. Sci. 2020, 174, 108840.

    Article  CAS  Google Scholar 

  41. Ehler, T. T.; Malmberg, N.; Noe, L. J. Characterization of self-assembled alkanethiol monolayers on silver and gold using surface plasmon spectroscopy. J. Phys. Chem. B 1997, 101, 1268–1272.

    Article  CAS  Google Scholar 

  42. Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: Effect of metal work function and applied bias on tunneling efficiency and contact resistance. J. Am. Chem. Soc. 2004, 126, 14287–14296.

    Article  CAS  Google Scholar 

  43. Kolipaka, S.; Aithal, R. K.; Kuila, D. Fabrication and characterization of an indium tin oxide-octadecanethiol-aluminum junction for molecular electronics. Appl. Phys. Lett. 2006, 88, 233104.

    Article  Google Scholar 

  44. Liu, G. Y.; Zeng, H. B.; Lu, Q. Y.; Zhong, H.; Choi, P.; Xu, Z. H. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure-reactivity relations. Colloids Surf. A: Physicochem. Eng. Aspects 2012, 409, 1–9.

    Article  CAS  Google Scholar 

  45. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

    Article  CAS  Google Scholar 

  46. Kozlica, D. K.; Kokalj, A.; Milošev, I. Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium-An electrochemical, XPS, FTIR and DFT study. Corros. Sci. 2021, 182, 109082.

    Article  CAS  Google Scholar 

  47. Fowlkes, J. D.; Kondic, L.; Diez, J.; Wu, Y. Y.; Rack, P. D. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 2011, 11, 2478–2485.

    Article  CAS  Google Scholar 

  48. Zhong, L.; Sansoz, F.; He, Y.; Wang, C. M.; Zhang, Z.; Mao, S. X. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nat. Mater. 2017, 16, 439–445.

    Article  CAS  Google Scholar 

  49. Nichols, F. A. On the spheroidization of rod-shaped particles of finite length. J. Mater. Sci. 1976, 11, 1077–1082.

    Article  Google Scholar 

  50. Liu, G. S.; He, M. Y.; Wang, T.; Wang, L.; He, Z.; Zhan, R. Z.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. Optically programmable Plateau-Rayleigh instability for high-resolution and scalable morphology manipulation of silver nanowires for flexible optoelectronics. ACS Appl. Mater. Interfaces 2020, 12, 53984–53993.

    Article  CAS  Google Scholar 

  51. Wu, X. C.; Wiame, F.; Maurice, V.; Marcus, P. 2-Mercaptobenzimidazole films formed at ultra-low pressure on copper: Adsorption, thermal stability and corrosion inhibition performance. Appl. Surf. Sci. 2020, 527, 146814.

    Article  CAS  Google Scholar 

  52. Liu, G. S.; Xu, Y.; Kong, Y.; Wang, L.; Wang, J.; Xie, X.; Luo, Y.; Yang, B.-R. Comprehensive stability improvement of silver nanowire networks via self-assembled mercapto inhibitors. ACS Appl. Mater. Inter. 2018, 10, 37699–37708.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 61904067, 62175094, 61805108, and 62075088), Science and Technology Projects in Guangzhou (No. 202102020758), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011498), Scientific and Technological Projection of Guangdong province (No. 2020B1212060030), Key-Area Research and Development Program of Guangdong Province (No. 2019B010934001), and Fundamental Research Funds for the Central Universities (Nos. 21621405 and 21620328). We thank M.S. Yuwang Xu for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo-Ru Yang or Yunhan Luo.

Electronic Supplementary Material

12274_2021_4042_MOESM1_ESM.pdf

Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, GS., Zheng, H., Zeng, Z. et al. Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes. Nano Res. 15, 4552–4562 (2022). https://doi.org/10.1007/s12274-021-4042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4042-3

Keywords

Navigation