Skip to main content
Log in

Sealing functional ionic liquids in conjugated microporous polymer membrane by solvent-assisted micropore tightening

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous organic polymers hold great promise for molecular sieving membrane separation. Although the inclusion of functional ionic liquid (IL) in the pores offers a facile way to manipulate their separation properties, the IL leaching during the separation process is difficult to avoid. Herein, we report a strategy to in-situ encapsulate ILs into the micropores of the conjugated microporous polymer membrane via a 6-min electropolymerization and further seal the aperture of the pores to prevent ILs leaching by solvent-assisted micropore tightening (SAMT). Upon screening the binding energy between different ILs and gas molecules, two ILs were selected to be incorporated into the membrane for CO2/CH4 and O2/N2 gas separations. The resultant separation performances surpass the 2008 Robeson upper bound. Notably, the ILs can be locked in the micropores by a facile high surface tension solvent treatment process to improve their separation stability, as evidenced by a 7-day continuous test. This simple and controllable process not only enables efficient and steady separation performance but also provides an effective strategy for confining and sealing functional guest molecules in the porous solids for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, S.; Khan, A. L.; Cano-Odena, A.; Liu, C. Q.; Vankelecom, I. F. J. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010, 39, 750–768.

    Article  CAS  Google Scholar 

  2. Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L. J.; Iqbal, T.; Rasheed, M. I.; Farooq, M. Z.; Saeed, M. et al. Membranes for CO2/CH4 and CO2/N2 gas separation. Chem. Eng. Technol. 2020, 43, 184–199.

    Article  CAS  Google Scholar 

  3. Chuah, C. Y.; Goh, K.; Yang, Y. Q.; Gong, H. Q.; Li, W.; Karahan, H. E.; Guiver, M. D.; Wang, R.; Bae, T. H. Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118, 8655–8769.

    Article  CAS  Google Scholar 

  4. Bae, Y. S.; Hauser, B. G.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q. Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Micropor. Mesopor. Mater. 2011, 141, 231–235.

    Article  CAS  Google Scholar 

  5. Dalane, K.; Dai, Z. D.; Mogseth, G.; Hillestad, M.; Deng, L. Y. Potential applications of membrane separation for subsea natural gas processing: A review. J. Nat. Gas Sci. Eng. 2017, 39, 101–117.

    Article  CAS  Google Scholar 

  6. Deng, L. Y.; Hägg, M. B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int. J. Greenh. Gas Con. 2010, 4, 638–646.

    Article  CAS  Google Scholar 

  7. George, G.; Bhoria, N.; AlHallaq, S.; Abdala, A.; Mittal, V. Polymer membranes for acid gas removal from natural gas. Sep. Purif. Technol. 2016, 158, 333–356.

    Article  CAS  Google Scholar 

  8. Yu, G. L.; Rong, H. Z.; Zou, X. Q.; Zhu, G. S. Engineering microporous organic framework membranes for CO2 separations. Mol. Syst. Des. Eng. 2017, 2, 182–190.

    Article  CAS  Google Scholar 

  9. Shekhah, O.; Chernikova, V.; Belmabkhout, Y.; Eddaoudi, M. Metal-organic framework membranes: From fabrication to gas separation. Crystals 2018, 8, 412.

    Article  Google Scholar 

  10. Jiao, W. M.; Ban, Y. J.; Shi, Z. X.; Jiang, X. S.; Li, Y. S.; Yang, W. S. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework zif-108 doped polyimide matrices. Chem. Commun. 2016, 52, 13779–13782.

    Article  CAS  Google Scholar 

  11. Li, Y. S.; Yang, W. S. Molecular sieve membranes: From 3d zeolites to 2d mofs. Chin. J. Catal. 2015, 36, 692–697.

    Article  CAS  Google Scholar 

  12. Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.

    Article  CAS  Google Scholar 

  13. Rong, H. Z.; Wang, G. M.; Yan, J. X.; Zou, X. Q.; Zhu, G. S. Surface-gel-conversion synthesis of submicron-thick mfi zeolite membranes to expedite shape-selective separation of hexane isomers. Sci. China Mater. 2021, 64, 374–382.

    Article  CAS  Google Scholar 

  14. Brennecke, J. F.; Gurkan, B. E. Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 2010, 1, 3459–3464.

    Article  CAS  Google Scholar 

  15. Yan, X. R.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic liquids combined with membrane separation processes: A review. Sep. Purif. Technol. 2019, 222, 230–253.

    Article  CAS  Google Scholar 

  16. Zeng, S. J.; Zhang, X. P.; Bai, L.; Zhang, X. C.; Wang, H.; Wang, J. J.; Bao, D.; Li, M. D.; Liu, X. Y.; Zhang, S. J. Ionic-liquid-based CO2 capture systems: Structure, interaction and process. Chem. Rev. 2017, 117, 9625–9673.

    Article  CAS  Google Scholar 

  17. Tomé, L. C.; Florindo, C.; Freire, C. S. R.; Rebelo, L. P. N.; Marrucho, I. M. Playing with ionic liquid mixtures to design engineered CO2 separation membranes. Phys. Chem. Chem. Phys. 2014, 16, 17172–17182.

    Article  Google Scholar 

  18. Tomé, L. C.; Patinha, D. J. S.; Freire, C. S. R.; Rebelo, L. P. N.; Marrucho, I. M. CO2 separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv. 2013, 3, 12220–12229.

    Article  Google Scholar 

  19. Neves, L. A.; Crespo, J. G.; Coelhoso, I. M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci. 2010, 357, 160–170.

    Article  CAS  Google Scholar 

  20. Scovazzo, P.; Havard, D.; McShea, M.; Mixon, S.; Morgan, D. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J. Membr. Sci. 2009, 327, 41–48.

    Article  CAS  Google Scholar 

  21. Condemarin, R.; Scovazzo, P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium rtil data. Chem. Eng. J. 2009, 147, 51–57.

    Article  CAS  Google Scholar 

  22. Ferguson, L.; Scovazzo, P. Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: Data and correlations. Ind. Eng. Chem. Res. 2007, 46, 1369–1374.

    Article  CAS  Google Scholar 

  23. Shahkaramipour, N.; Adibi, M.; Seifkordi, A. A.; Fazli, Y. Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes. J. Membr. Sci. 2014, 455, 229–235.

    Article  CAS  Google Scholar 

  24. Lozano, L. J.; Godínez, C.; de los Ríos, A. P.; Hernández-Fernández, F. J.; Sánchez-Segado, S.; Alguacil, F. J. Recent advances in supported ionic liquid membrane technology. J. Membr. Sci. 2011, 376, 1–14.

    Article  CAS  Google Scholar 

  25. Gao, H. S.; Bai, L.; Han, J. L.; Yang, B. B.; Zhang, S. J.; Zhang, X. P. Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. 2018, 54, 12671–12685.

    Article  CAS  Google Scholar 

  26. Tomé, L. C.; Marrucho, I. M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824.

    Article  Google Scholar 

  27. Ban, Y. J.; Li, Z. J.; Li, Y. S.; Peng, Y.; Jin, H.; Jiao, W. M.; Guo, A.; Wang, P.; Yang, Q. Y.; Zhong, C. L. et al. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of zif-8 for membrane-based CO2 capture. Angew. Chem., Int. Ed. 2015, 54, 15483–15487.

    Article  CAS  Google Scholar 

  28. Gupta, K. M.; Chen, Y. F.; Jiang, J. W. Ionic liquid membranes supported by hydrophobic and hydrophilic metal-organic frameworks for CO2 capture. J. Phys. Chem. C 2013, 117, 5792–5799.

    Article  CAS  Google Scholar 

  29. Chen, S.; Behera, N.; Yang, C.; Dong, Q. B.; Zheng, B. S.; Li, Y. Y.; Tang, Q.; Wang, Z. X.; Wang, Y. Q.; Duan, J. G. A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Res. 2021, 14, 546–553.

    Article  CAS  Google Scholar 

  30. Li, S. L.; Zeng, S. L.; Tian, Y. Y.; Jing, X. F.; Sun, F. X.; Zhu, G. S. Two flexible cationic metal-organic frameworks with remarkable stability for CO2/CH4 separation. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3329-8.

  31. Vismara, R.; Di Nicola, C.; Millán, R. G. S.; Domasevich, K. V.; Pettinari, C.; Navarro, J. A. R.; Galli, S. Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Res. 2021, 14, 532–540.

    Article  CAS  Google Scholar 

  32. Yang, B. Q.; Zhou, F.; Liu, S. M.; Wang, P. X.; Alshammari, A. S.; Deng, Y. Q. Interaction between CO2 and ionic liquids confined in the nanopores of SAPO-11. RSC Adv. 2015, 5, 48908–48915.

    Article  CAS  Google Scholar 

  33. Yu, Y. H.; Mai, J. Z.; Wang, L. F.; Li, X. H.; Jiang, Z.; Wang, F. R. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in nay zeolite for CO2 capture. Sci. Rep. 2014, 4, 5997.

    Article  CAS  Google Scholar 

  34. Zhang, J.; Zhang, Q. H.; Shi, F.; Zhang, S. G.; Qiao, B. T.; Liu, L. Q.; Ma, Y. B.; Deng, Y. Q. Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel. Chem. Phys. Lett. 2008, 461, 229–234.

    Article  CAS  Google Scholar 

  35. Zhang, S. G.; Zhang, J. H.; Zhang, Y.; Deng, Y. Q. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755–6833.

    Article  CAS  Google Scholar 

  36. Zhao, Y.; Wang, X. Y.; Zhang, C.; Jiang, J. X. Conjugated microporous polymers based on tetraphenylethylene for gas adsorption. Acta Chim. Sin. 2015, 73, 634–640.

    Article  CAS  Google Scholar 

  37. Yao, C.; Li, G. Y.; Xu, Y. H. Carboxyl-enriched conjugated microporous polymers: Impact of building blocks on porosity and gas adsorption. Acta Phys.-Chim. Sin. 2017, 33, 1898–1904.

    CAS  Google Scholar 

  38. Sun, C. J.; Zhao, X. Q.; Wang, P. F.; Wang, H.; Han, B. H. Thiophene-based conjugated microporous polymers: Synthesis, characterization and efficient gas storage. Sci. China Chem. 2017, 60, 1067–1074.

    Article  CAS  Google Scholar 

  39. Wang, D. M.; Dong, X. L.; Han, Y.; Liu, Y. L. Separation of hexane isomers by introducing “triangular-like and quadrilateral-like channels” in a bcu-type metal-organic framework. Nano Res. 2021, 14, 526–531.

    Article  CAS  Google Scholar 

  40. Zhang, M. X.; Jing, X. C.; Zhao, S.; Shao, P. P.; Zhang, Y. Y.; Yuan, S.; Li, Y. S.; Gu, C.; Wang, X. Q.; Ye, Y. C. et al. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation. Angew. Chem., Int. Ed. 2019, 58, 8768–8772.

    Article  CAS  Google Scholar 

  41. Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 2008, 108, 2238–2264.

    Article  CAS  Google Scholar 

  42. Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2009, 48, 2739–2751.

    Article  CAS  Google Scholar 

  43. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.

    Article  CAS  Google Scholar 

  44. Song, T. Q. M.; Morales-Collazo, O.; Brennecke, J. F. Solubility and diffusivity of oxygen in ionic liquids. J. Chem. Eng. Data 2019, 64, 4956–4967.

    Article  CAS  Google Scholar 

  45. Geens, J.; Van der Bruggen, B.; Vandecasteele, C. Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling. Chem. Eng. Sci. 2004, 59, 1161–1164.

    Article  CAS  Google Scholar 

  46. Wang, Z. B.; Tang, H. L.; Li, J. S.; Pan, M. Morphology change of biaxially oriented polytetrafluoroethylene membranes caused by solvent soakage. J. Appl. Polym. Sci. 2011, 121, 1464–1468.

    Article  CAS  Google Scholar 

  47. Feriante, C. H.; Jhulki, S.; Evans, A. M.; Dasari, R. R.; Slicker, K.; Dichtel, W. R.; Marder, S. R. Rapid synthesis of high surface area imine-linked 2D covalent organic frameworks by avoiding pore collapse during isolation. Adv. Mater. 2020, 32, 1905776.

    Article  CAS  Google Scholar 

  48. Zhu, D. Y.; Verduzco, R. Ultralow surface tension solvents enable facile cof activation with reduced pore collapse. Acs Appl. Mater. Interfaces 2020, 12, 33121–33127.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012, 21625102, and 21971017), the National Key Research and Development Program of China (No. 2020YFB1506300), Beijing Municipal Science and Technology Project (No. Z201100007520005), Beijing Institute of Technology Research Fund Program, and Analysis and Testing Center of Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Feng or Bo Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yu, A., Wu, X. et al. Sealing functional ionic liquids in conjugated microporous polymer membrane by solvent-assisted micropore tightening. Nano Res. 15, 2552–2557 (2022). https://doi.org/10.1007/s12274-021-3750-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3750-z

Keywords

Navigation