Skip to main content
Log in

Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

How to directionally design the hollow zeolite via a green route is of great significance. Here, we successfully synthesized the hollow Fe-silicate-1 encapsulated ultra-small Fe2O3 nanoparticles (2.5 nm) with higher yield (85.2%) by mother liquid than traditional dissolution-recrystallization for the first time, which was achieved by precisely regulating the number and distribution of defects in zeolite and cleverly utilizing the TPAOH and nuclei in mother liquor. The effects of synthetic temperature, synthetic period and addition amount of parent zeolite on the formation of hollow zeolite have been investigated and the effect of synthetic conditions on the defects in parent zeolite has been also firstly quantified. The corresponding formation mechanism has been proposed. The abundant inner defects provided by the zeolite synthesized at 130 °C for 1 day and large amount of TPAOH remaining in mother liquid are conducive to the formation of hollow zeolite. Meanwhile, both parent zeolite and nuclei (4-, 5-member rings and structure units) in mother liquid obtained at 130 °C play the crucial roles in enhancing the zeolite yield. Notably, Fe2O3 nanoparticles could decompose into small fragments by the interaction with nuclei in mother liquid. Partial ultra-small Fe2O3 nanoparticles would be encapsulated in cavity and the rest could be inserted in the zeolite framework, which is significantly different from the conventional dissolution-recrystallization mechanism. The obtained encapsulated catalyst shows the superior catalytic performance and stability in phenol and tetracycline degradation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ma, W.; Wang, K.; Pan, S. H.; Wang, H. Iron-exchanged zeolite micromotors for enhanced degradation of organic pollutants. Langmuir 2020, 36, 6924–6929.

    Article  CAS  Google Scholar 

  2. Shukla, P.; Wang, S. B.; Singh, K.; Ang, H. M.; Tadé, M. O. Cobalt exchanged zeolites for heterogeneous catalytic oxidation of phenol in the presence of peroxymonosulphate. Appl. Catal. B: Environ. 2010, 99, 163–169.

    Article  CAS  Google Scholar 

  3. Le, T. X. H.; Drobek, M.; Bechelany, M.; Motuzas, J.; Julbe, A.; Cretin, M. Application of Fe-MFI zeolite catalyst in heterogeneous electro-Fenton process for water pollutants abatement. Micropor. Mesopor. Mater. 2019, 278, 64–69.

    Article  CAS  Google Scholar 

  4. Rakibuddin, M.; Mandal, S.; Ananthakrishnan, R. A novel ternary CuO decorated Ag3AsO4/GO hybrid as a Z-scheme photocatalyst for enhanced degradation of phenol under visible light. New J. Chem. 2017, 41, 1380–1389.

    Article  CAS  Google Scholar 

  5. Deng, S. L.; Lv, G. J.; Zhai, Y.; Yang, Z. B.; Zhu, Y. Q.; Li, H. C.; Wang, F. M.; Zhang, X. B. Framework Fe-doped mobil five (MFI) zeolites as highly active and stable Fenton-like catalysts for basic dyes degradation. J. Nanosci. Nanotechnol. 2020, 20, 1520–1529.

    Article  CAS  Google Scholar 

  6. Hu, L. X.; Yang, X. P.; Dang, S. T. An easily recyclable Co/SBA-15 catalyst: Heterogeneous activation of peroxymonosulfate for the degradation of phenol in water. Appl. Catal. B: Environ. 2011, 102, 19–26.

    Article  CAS  Google Scholar 

  7. Zhu, Q.; Yan, J. R.; Dai, Q. G.; Wu, Q. Q.; Cai, Y. P.; Wu, J. Y.; Wang, X. Y.; Zhan, W. C. Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene. J. Hazard. Mater. 2020, 385, 121581.

    Article  CAS  Google Scholar 

  8. Dai, C. Y.; Zhang, A. F.; Liu, M.; Gu, L.; Guo, X. W.; Song, C. S. Hollow alveolus-like nanovesicle assembly with metal-encapsulated hollow zeolite nanocrystals. ACS Nano 2016, 10, 7401–7408.

    Article  CAS  Google Scholar 

  9. Yan, Y.; Wu, X. W.; Zhang, H. P. Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Sep. Purif. Technol. 2016, 171, 52–61.

    Article  CAS  Google Scholar 

  10. Dai, C. Y.; Zhang, A. F.; Luo, L.; Zhang, X. B.; Liu, M.; Wang, J. H.; Guo, X. W.; Song, C. S. Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation. Catal. Today 2017, 297, 335–343.

    Article  CAS  Google Scholar 

  11. Dai, C. Y.; Zhang, A. F.; Liu, M.; Guo, X. W.; Song, C. S. Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Adv. Funct. Mater. 2015, 25, 7479–7487.

    Article  Google Scholar 

  12. Cui, T. L.; Ke, W. Y.; Zhang, W. B.; Wang, H. H.; Li, X. H.; Chen, J. S. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 9178–9182.

    Article  CAS  Google Scholar 

  13. Wu, S. M.; Yang, X. Y.; Janiak, C. Confinement effects in zeolite-confined noble metals. Angew. Chem., Int. Ed. 2019, 58, 12340–12354.

    Article  CAS  Google Scholar 

  14. Kim, J. C.; Lee, S.; Cho, K.; Na, K.; Lee, C.; Ryoo, R. Mesoporous MFI zeolite nanosponge supporting cobalt nanoparticles as a Fischer-Tropsch catalyst with high yield of branched hydrocarbons in the gasoline range. ACS Catal. 2014, 4, 3919–3927.

    Article  CAS  Google Scholar 

  15. Wu, Y. Q.; Holdren, S.; Zhang, Y.; Oh, S. C.; Tran, D. T.; Emdadi, L.; Lu, Z.; Wang, M.; Woehl, T. J.; Zachariah, M. et al. Quantification of rhenium oxide dispersion on zeolite: Effect of zeolite acidity and mesoporosity. J. Catal. 2019, 372, 128–141.

    Article  CAS  Google Scholar 

  16. Wang, L.; Zhang, J.; Yi, X. F.; Zheng, A. M.; Deng, F.; Chen, C. Y.; Ji, Y. Y.; Liu, F. J.; Meng, X. J.; Xiao, F. S. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catal. 2015, 5, 2727–2734.

    Article  CAS  Google Scholar 

  17. Cho, H. J.; Kim, D.; Li, J.; Su, D.; Xu, B. J. Zeolite-encapsulated Pt nanoparticles for tandem catalysis. J. Am. Chem. Soc. 2018, 140, 13514–13520.

    Article  CAS  Google Scholar 

  18. Yang, X. L.; Liu, Q. G.; Zhang, Y. R.; Su, X.; Huang, Y. Q.; Zhang, T. In situ synthesis of metal clusters encapsulated within small-pore zeolites via a dry gel conversion method. Nanoscale 2018, 10, 11320–11327.

    Article  CAS  Google Scholar 

  19. Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484–7487.

    Article  CAS  Google Scholar 

  20. Xu, Z. K.; Yue, Y. Y.; Bao, X. J.; Xie, Z. L.; Zhu, H. B. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS Catal. 2020, 10, 818–828.

    Article  CAS  Google Scholar 

  21. Cho, J.; Xu, L. L.; Jo, C.; Ryoo, R. Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chem. Commun. 2017, 53, 3810–3813.

    Article  CAS  Google Scholar 

  22. Goel, S.; Zones, S. I.; Iglesia, E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 2014, 136, 15280–15290.

    Article  CAS  Google Scholar 

  23. Zhang, J.; Wang, L.; Zhang, B. S.; Zhao, H. S.; Kolb, U.; Zhu, Y. H.; Liu, L. M.; Han, Y.; Wang, G. X.; Wang, C. T. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 2018, 1, 540–546.

    Article  CAS  Google Scholar 

  24. Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. S. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 2016, 138, 7880–7883.

    Article  CAS  Google Scholar 

  25. Dai, C. Y.; Zhang, S. H.; Zhang, A. F.; Song, C. S.; Shi, C.; Guo, X. W. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane. J. Mater. Chem. A 2015, 3, 16461–16468.

    Article  CAS  Google Scholar 

  26. Li, S. W.; Tuel, A.; Laprune, D.; Meunier, F.; Farrusseng, D. Transition-metal nanoparticles in hollow zeolite single crystals as bifunctional and size-selective hydrogenation catalysts. Chem. Mater. 2015, 27, 276–282.

    Article  CAS  Google Scholar 

  27. Chen, Y.; Zhu, X. X.; Wang, X. P.; Su, Y. P. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite. Chem. Eng. J. 2021, 419, 129641.

    Article  CAS  Google Scholar 

  28. Zhai, Y.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Jiang, T.; Wu, Y. Z.; Li, M. Y.; Li, M. Y.; Zhang, Q.; Liu, Y. K. Racing crystallization mechanism for economical design of single-crystal hollow ZSM-5 with the broken limit of Si/Al ratio and improved mass transfer. ACS Appl. Mater. Interfaces 2021, 13, 15246–15260.

    Article  CAS  Google Scholar 

  29. Zhai, Y.; Zhang, X. B.; Wang, F. M.; Lv, G. J.; Li, H.; Jiang, T.; Wu, Y. Z.; Li, M. Y. One-step synthesis of high-amount Fe-doped hollow MFI zeolite by Kirkendall effect in the presence of organic acid anions. Micropor. Mesopor. Mater. 2020, 307, 110451.

    Article  CAS  Google Scholar 

  30. Wu, Q. M.; Liu, X. L.; Zhu, L. F.; Ding, L. H.; Gao, P.; Wang, X.; Pan, S. X.; Bian, C. Q.; Meng, X. J.; Xu, J. et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids. J. Am. Chem. Soc. 2015, 137, 1052–1055.

    Article  CAS  Google Scholar 

  31. Zuo, Y.; Wang, X. S.; Guo, X. W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquid of titanium silicalite-1 as seed. Ind. Eng. Chem. Res. 2011, 50, 8485–8491.

    Article  CAS  Google Scholar 

  32. Pan, H. H.; Pan, Q. X.; Zhao, Y. S.; Luo, Y. B.; Shu, X. T.; He, M. Y. A green and efficient synthesis of ZSM-5 using NaY as seed with mother liquid recycling and in the absence of organic template. Ind. Eng. Chem. Res. 2010, 49, 7294–7302.

    Article  CAS  Google Scholar 

  33. Zuo, Y.; Wang, X. S.; Guo, X. W. Synthesis of titanium silicalite-1 with small crystal size by using mother liquid of titanium silicalite-1 as seed. Ind. Eng. Chem. Res. 2011, 50, 8485–8491.

    Article  CAS  Google Scholar 

  34. Liu, M.; Wei, H. J.; Li, B. J.; Song, L. Y.; Zhao, S. Z.; Niu, C. C.; Jia, C. F.; Wang, X. Y.; Wen, Y. Q. Green and efficient preparation of hollow titanium silicalite-1 by using recycled mother liquid. Chem. Eng. J. 2011, 331, 194–202.

    Article  CAS  Google Scholar 

  35. Lv, G. J.; Deng, S. L.; Zhai, Y.; Zhu, Y. Q.; Li, H. C.; Wang, F. M.; Zhang, X. B. P123 lamellar micelle-assisted construction of hierarchical TS-1 stacked nanoplates with constrained mesopores for enhanced oxidative desulfurization. Appl. Catal. A: Gen. 2018, 567, 28–35.

    Article  CAS  Google Scholar 

  36. Wang, J. Y.; Liu, P. S.; Boronat, M.; Ferri, P.; Xu, Z. G.; Liu, P.; Shen, B. J.; Wang, Z. D.; Yu, J. H. Organic-free synthesis of zeolite Y with high Si/Al ratios: Combined strategy of in situ hydroxyl radical assistance and post-synthesis treatment. Angew. Chem., Int. Ed. 2020, 59, 17225–17228.

    Article  CAS  Google Scholar 

  37. Dai, C. Y.; Zhang, A. F.; Li, L. L.; Hou, K. K.; Ding, F. S.; Li, J.; Mu, D. Y.; Song, C. S.; Liu, M.; Guo, X. W. Synthesis of hollow nanocubes and macroporous monoliths of silicalite-1 by alkaline treatment. Chem. Mater. 2013, 25, 4197–4205.

    Article  CAS  Google Scholar 

  38. Li, H.; Zhai, Y.; Zhang, X. B.; Lv, G. J.; Shen, Y.; Wang, X. Q.; Jiang, T.; Wu, Y. Z. Iron-containing TS-1 zeolites with controllable mesopores by desilication and their application in phenol hydroxylation. Ind. Eng. Chem. Res. 2020, 59, 10289–10297.

    Article  CAS  Google Scholar 

  39. Kwok, K. M.; Ong, S. W. D.; Chen, L. W.; Zeng, H. C. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Appl. Mater. Interfaces 2019, 11, 14774–14785.

    Article  CAS  Google Scholar 

  40. Jiang, J. L.; Yang, Y.; Duanmu, C.; Xu, Y.; Feng, L. D.; Gu, X.; Chen, J. Preparation of hollow ZSM-5 crystals in the presence of polyacrylamide. Micropor. Mesopor. Mater. 2012, 163, 11–20.

    Article  CAS  Google Scholar 

  41. Ma, Z.; Fu, T. J.; Wang, Y. J.; Shao, J.; Ma, Q.; Zhang, C. M.; Cui, L. P.; Li, Z. Silicalite-1 derivational desilication-recrystallization to prepare hollow nano-ZSM-5 and highly mesoporous micro-ZSM-5 catalyst for methanol to hydrocarbons. Ind. Eng. Chem. Res. 2019, 58, 2146–2158.

    Article  CAS  Google Scholar 

  42. Chiesa, M.; Meynen, V.; Van Doorslaer, S.; Cool, P.; Vansant, E. F. Vanadium silicalite-1 nanoparticles deposition onto the mesoporous walls of SBA-15. Mechanistic insights from a combined EPR and Raman study. J. Am. Chem. Soc. 2006, 128, 8955–8963.

    Article  CAS  Google Scholar 

  43. Wang, L.; Xu, Y.; Zhai, G. Z.; Zheng, Y. M.; Huang, J. L.; Sun, D. H.; Li, Q. B. Biophenol-mediated solvent-free synthesis of titanium silicalite-1 to improve the acidity character of framework Ti toward catalysis application. ACS Sustainable Chem. Eng. 2020, 8, 12177–12186.

    Article  CAS  Google Scholar 

  44. Kalbasi, R. J.; Mazaheri, O. Facile one-pot tandem reductive amination of aldehydes from nitroarenes over a hierarchical ZSM-5 zeolite containing palladium nanoparticles. New J. Chem. 2016, 40, 9627–9637.

    Article  CAS  Google Scholar 

  45. Zhou, Y. N.; Liu, H. Y.; Rao, X. R.; Yue, Y. Y.; Zhu, H. B.; Bao, X. J. Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral. Micropor. Mesopor. Mater. 2020, 305, 110357.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21978198 and 22002052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xubin Zhang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Material

12274_2021_3747_MOESM1_ESM.pdf

Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., Wang, F., Zhang, X. et al. Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid. Nano Res. 14, 4304–4313 (2021). https://doi.org/10.1007/s12274-021-3747-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3747-7

Keywords

Navigation