Skip to main content
Log in

Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Core-shell structured ZSM-5@Silicalite-1 zeolite could effectively hinder the deactivation of catalyst surface. Currently, organic structure directing agents(OSDAs) are necessary in the conventional route for the synthesis of this core-shell zeolite under hydrothermal conditions, which is costly and environmental-unfriendly. In this research, a synthesis of the core-shell structured ZSM-5@Silicalite-1 zeolite with a strategy of alcohol filling and zeolite seeding without any organic template or solvent is exhibited. The obtained products are well characterized by X-ray powder diffractometer(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 sorption isotherms, solid magic angle spinning(MAS) NMR, temperature-programmed-desorption of ammonia(NH3-TPD), and X-ray photoelectron spectroscopy(XPS) techniques, in order to confirm the core-shell structure. More importantly, the core-shell structured ZSM-5@Silicalite-1 zeolite exhibits a long lifetime and a high p-xylene selectivity in the alkylation of toluene with methanol, compared with the conventional ZSM-5 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vanvu D., Miyamoto M., Nishiyama N., Egashira Y., Ueyama K. J., Catal., 2006, 243, 389

    Article  Google Scholar 

  2. Zhao Y., Tan, W., Wu H. Y., Zhang A. F., Liu M., Li G. M., Wang X. S., Song C. S., Guo X. W., Catal. Today, 2011, 160, 179

    Article  CAS  Google Scholar 

  3. Sugi Y., Kubota Y., Komura K., Sugiyama N., Hayashi M., Kim J.-H., Seo G., Appl. Catal. A Gen., 2006, 299, 157

    Article  CAS  Google Scholar 

  4. Wang C. F., Zhang L., Huang X., Zhu Y. F., Li G.(Kevin), Gu Q. F., Chen J. Y., Ma L. G., Li X. J., He Q. H., Xu J. B., Sun Q., Song C. Q., Peng M., Sun J. L., Ma D., Nat. Commun., 2019, 10, 4348

    Article  Google Scholar 

  5. Derouane E., J. Catal., 1980, 65, 486

    Article  CAS  Google Scholar 

  6. Csicsery S. M., Zeolites, 1984, 4, 12

    Article  Google Scholar 

  7. Llopis F., Sastre G., Corma A., J. Catal., 2004, 227, 227

    Article  CAS  Google Scholar 

  8. Shen K., Qian W. Z., Wang N., Su C., Wei F., J. Am. Chem. Soc., 2013, 135, 15322

    Article  CAS  Google Scholar 

  9. Weber R. W., Fletcher J. C. Q., Möller K. P., O’Connor C. T., Microporous Mater., 1996, 7, 15

    Article  CAS  Google Scholar 

  10. Weisz P. B., Frilette V. J., J. Phys. Chem., 1960, 64, 382

    Article  CAS  Google Scholar 

  11. Fong Y., Abdullah A., Ahmad A., Bhatia S., Chem. Eng. J., 2008, 139, 172

    Article  CAS  Google Scholar 

  12. Wu H. Y., Liu M., Tan W., Hou K. K., Zhang A. F., Wang Y. R., Guo X. W., J. Energy Chem., 2014, 23, 491

    Article  Google Scholar 

  13. Li L. L., Nie X. W., Song C. S., Guo X. W., Acta Phys.-Chim. Sin., 2013, 29, 754

    Article  Google Scholar 

  14. Liu C., Long Y. H., Wang Z. B., Chin. J. Chem. Eng., 2018, 26, 2070

    Article  CAS  Google Scholar 

  15. Mitsuyoshi D., Kuroiwa K., Kataoka Y., Nakagawa T., Kosaka M., Nakamura K., Suganuma S., Araki Y., Katada N., Micro. Meso. Mater., 2017, 242, 118

    Article  CAS  Google Scholar 

  16. Zhang J. G., Qian W. Z., Kong C. Y., Wei F., ACS Catal., 2015, 5, 2982

    Article  CAS  Google Scholar 

  17. Zhu Z. R., Chen Q. L., Xie Z. K., Yang W. M., Li C., Micro. Meso. Mater., 2006, 88, 16

    Article  CAS  Google Scholar 

  18. Chen N. Y., Kaeding W. W., Dwyer F. G., J. Am. Chem. Soc., 1979, 101, 6783

    Article  CAS  Google Scholar 

  19. Tsai T.-C., Wang I., Huang C.-K., Liu S.-D., Appl. Catal. A Gen., 2007, 321, 125

    Article  CAS  Google Scholar 

  20. Weber R. W., Möller K. P., Unger M., O’Connor C. T., Micro. Meso. Mater., 1998, 23, 179

    Article  CAS  Google Scholar 

  21. Li G. X., Wu, C., Dong P., Ji, D., Zhang Y. F., Catal. Lett., 2020, 150, 1923

    Article  CAS  Google Scholar 

  22. Miyamoto M., Ono S., Oumi Y., Uemiya S., Van der Perre S., Virdis T., Baron G. V., Denayer J. F. M., ACS Appl. Nano Mater., 2019, 2, 2642

    Article  CAS  Google Scholar 

  23. Zhang J., Wang, L., Wu, Z. Y., Wang, H., Wang, C. T., Han, S. C., Xiao, F.-S., Ind. Eng. Chem. Res., 2019, 58, 15453

    Article  CAS  Google Scholar 

  24. Miyamoto M., Kamei T., Nishiyama N., Egashira Y., Ueyama K., Adv. Mater., 2005, 17, 1985

    Article  CAS  Google Scholar 

  25. Deng Y. Q., Zhou W. F., Lv H. M., Zhang Y. Y., Au C. T., Yin S. F., RSC Adv., 2014, 4, 37296

    Article  CAS  Google Scholar 

  26. Luan H. M., Lei C., Ma Y., Wu Q. M., Zhu L. F., Xu H., Han S. C., Zhu Q. Y., Liu X. L., Meng X. J., Xiao F.-S., Chin. J. Catal., 2021, 42, 563

    Article  CAS  Google Scholar 

  27. Wu Q. M., Zhu L. F., Chu Y. Y., Liu X. L., Zhang C. S., Zhang J., Xu H., Xu J., Deng F., Feng Z. C., Meng X. J., Xiao F.-S., Angew. Chem. Int. Ed., 2019, 58, 12138

    Article  CAS  Google Scholar 

  28. Zhang C. S., Wu Q. M., Lei C., Pan S. X., Bian C. Q., Wang L., Meng X. J., Xiao F.-S., Ind. Eng. Chem. Res., 2017, 56, 1450

    Article  CAS  Google Scholar 

  29. Xu H., Zhang J., Wu Q. M., Chen W., Lei C., Zhu Q. Y., Han S. C., Fei J. H., Zheng A. M., Zhu L. F., Meng X. J., Maurer S., Dai D., Parvulescu A.-N., Müller U., Xiao F.-S., ACS Appl. Mater. Interfaces, 2019, 11, 23112

    Article  CAS  Google Scholar 

  30. Zhao S. F., Collins, D., Wang, L. Z., Huang, J., Catal. Today, 2021, 368, 211

    Article  CAS  Google Scholar 

  31. Miyake K., Hirota Y., Ono K., Uchida Y., Tanaka S., Nishiyama N., J. Catal., 2016, 342, 63

    Article  CAS  Google Scholar 

  32. Eschenbacher A., Goodarzi F., Saraeian A., Kegnæs S., Shanks B. H., Jensen A. D., J. Anal. Appl. Pyrolysis, 2020, 145, 104712

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China(No.2017YFB0702803), the Fundamental Research Funds for the Central Universities, China(No.2021QNA4028), and the National Natural Science Foundation of China(Nos.21802121, 2217020097, 21720102001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinming Wu or Feng-Shou Xiao.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, H., Wu, Q., Zhang, J. et al. Sustainable Synthesis of Core-shell Structured ZSM-5@Silicalite-1 Zeolite. Chem. Res. Chin. Univ. 38, 136–140 (2022). https://doi.org/10.1007/s40242-021-1288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1288-y

Keywords

Navigation