Skip to main content
Log in

Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rational optimization of plasmonic property of metal nanocrystals by manipulating the structure and morphology is crucial for the plasmon-enhanced application and has always been an urgent issue. Herein, Au nanorods with tunable surface roughness are prepared by growing PbS, overgrowing Au, and dissolving PbS nanoparticles on the basis of smooth Au nanorods. The transverse plasmon resonance of Au nanorods is notably improved due to plasmon coupling between Au nanorods and the surface-modified Au nanoparticles, resulting in the strong and full-spectrum light absorption. Numerical simulations demonstrate that the surface-rough Au nanorods have abundant and full-surround hotspots coming from surface particle-particle plasmon coupling between ultrasmall nanogaps, sharp tips, and uneven areas on Au nanorods. With these characters, the surface-roughness-adjustable Au nanorods possess high tunability and enhancement of surface-enhanced Raman scattering (SERS) detection of Rhodamine B and significantly improved photothermal conversion efficiency. Au nanorods with the largest surface roughness have the highest Raman enhancement factor both at 532 and 785 nm laser excitation. Meanwhile, photothermal conversion experiments under near-infrared (808 nm) and simulated sunlight irradiation confirm that the Au nanorods with rough surface have prominent photothermal conversion efficiency and can be regarded as promising candidates for photothermal therapy and solar-driven water evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. F. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.

    Article  CAS  Google Scholar 

  2. Gao, Y. Y.; Nie, W.; Zhu, Q. H.; Wang, X.; Wang, S. Y.; Fan, F. T.; Li, C. The polarization effect in surface-plasmon-induced photocatalysis on Au/TiO2 nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 18218–18223.

    Article  CAS  Google Scholar 

  3. You, J. W.; Yu, Y.; Cai, K.; Zhou, D. M.; Zhu, H. M.; Wang, R. Y.; Zhang, Q. F.; Liu, H. W.; Cai, Y. T.; Lu, D. et al. Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Res. 2020, 13, 1636–1643.

    Article  CAS  Google Scholar 

  4. Ma, L.; Chen, Y. L.; Song, X. P.; Yang, D. J.; Li, H. X.; Ding, S. J.; Xiong, L.; Qin, P. L.; Chen, X. B. Structure-adjustable gold nanoingots with strong plasmon coupling and magnetic resonance for improved photocatalytic activity and SERS. ACS Appl. Mater. Interfaces 2020, 12, 38554–38562.

    Article  CAS  Google Scholar 

  5. Jiang, B.; Xu, L.; Chen, W.; Zou, C.; Yang, Y.; Fu, Y. Z.; Huang, S. M. Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS). Nano Res. 2017, 10, 3509–3521.

    Article  CAS  Google Scholar 

  6. Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338–3346.

    Article  CAS  Google Scholar 

  7. Wang, Q. S.; Wang, H.; Yang, Y.; Jin, L. H.; Liu, Y.; Wang, Y.; Yan, X. Y.; Gao, R. Q.; Lei, P. P.; Zhu, J. J. et al. Plasmonic Pt superstructures with boosted near-infrared absorption and photothermal conversion efficiency in the second biowindow for cancer therapy. Adv. Mater. 2019, 31, 1904836.

    Article  CAS  Google Scholar 

  8. Wang, L. L.; Zhu, G. H.; Wang, M., Yu, W.; Zeng, J.; Yu, X. X.; Xie, H. Q.; Li, Q. Dual plasmonic Au/TiN nanofluids for efficient solar photothermal conversion. Sol. Energy 2019, 184, 240–248.

    Article  CAS  Google Scholar 

  9. Huang, Y.; Zhang, X.; Ringe, E., Ma, L. W.; Zhai, X.; Wang, L. L.; Zhang, Z. J. Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale 2018, 10, 4267–4275.

    Article  CAS  Google Scholar 

  10. Liu, G. Q.; Li, Y.; Duan, G. T., Wang, J. J.; Liang, C.; Cai, W. P. Tunable surface plasmon resonance and strong SERS performances of Au opening-nanoshell ordered arrays. ACS Appl. Mater. Interfaces 2012, 4, 1–5.

    Article  Google Scholar 

  11. Bianco, G. V.; Giangregorio, M. M.; Losurdo, M.; Capezzuto, P.; Bruno, G. Supported faceted gold nanoparticles with tunable surface plasmon resonance for NIR-SERS. Adv. Funct. Mater. 2012, 22, 5081–5088.

    Article  CAS  Google Scholar 

  12. Qiu, J. J.; Wei, W. D. Surface plasmon-mediated photothermal chemistry. J. Phys. Chem. C 2014, 118, 20735–20749.

    Article  CAS  Google Scholar 

  13. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  CAS  Google Scholar 

  14. Zolotavin, P.; Alabastri, A.; Nordlander, P.; Natelson, D. Plasmonic heating in Au nanowires at low temperatures: The role of thermal boundary resistance. ACS Nano 2016, 10, 6972–6979.

    Article  CAS  Google Scholar 

  15. Cheng, X. J.; Sun, R.; Yin, L.; Chai, Z. F.; Shi, H. B.; Gao, M. Y. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.

    Article  Google Scholar 

  16. Jia, J.; Liu, G. Y.; Xu, W. J.; Tian, X. L.; Li, S. B.; Han, F.; Feng, Y. H.; Dong, X. C.; Chen, H. Y. Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II window. Angew. Chem., Int. Ed. 2020, 59, 14443–14448.

    Article  CAS  Google Scholar 

  17. Zhang, W. Y.; Cai, K.; Li, X. Y.; Zhang, J.; Ma, Z. Y.; Foda, M. F.; Mu, Y. L.; Dai, X. X.; Han, H. Y. Au hollow nanorods-chimeric peptide nanocarrier for NIR-II photothermal therapy and real-time apoptosis imaging for tumor theranostics. Theranostics 2019, 9, 4971–4981.

    Article  CAS  Google Scholar 

  18. Yang, D.; Yang, G. X.; Yang, P. P.; Lv, R. C.; Gai, S. L.; Li, C. X.; He, F.; Lin, J. Assembly of Au plasmonic photothermal agent and iron oxide nanoparticles on ultrathin black phosphorus for targeted photothermal and photodynamic cancer therapy. Adv. Funct. Mater. 2017, 27, 1700371.

    Article  Google Scholar 

  19. Song, G. F.; Yuan, Y.; Liu, J.; Liu, Q. L.; Zhang, W.; Fang, J.; Gu, J. J.; Ma, D. L.; Zhang, D. Biomimetic superstructures assembled from Au nanostars and nanospheres for efficient solar evaporation. Adv. Sustain. Syst. 2019, 3, 1900003.

    Article  Google Scholar 

  20. Zhu, L. L.; Gao, M. M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 2019, 57, 507–518.

    Article  CAS  Google Scholar 

  21. Huang, J.; He, Y. R.; Chen, M. J.; Jiang, B. C.; Huang, Y. M. Solar evaporation enhancement by a compound film based on Au@TiO2 core-shell nanoparticles. Sol. Energy 2017, 155, 1225–1232.

    Article  CAS  Google Scholar 

  22. Sun, Z. Y.; Wang, J. J.; Wu, Q. L.; Wang, Z. Y.; Wang, Z.; Sun, J.; Liu, C. J. Plasmon based double-layer hydrogel device for a highly efficient solar vapor generation. Adv. Funct. Mater. 2019, 29, 1901312.

    Article  Google Scholar 

  23. Qiao, P. Z.; Wu, J. X.; Li, H. Z.; Xu, Y. C.; Ren, L. P.; Lin, K.; Zhou, W. Plasmon Ag-promoted solar-thermal conversion on floating carbon cloth for seawater desalination and sewage disposal. ACS Appl. Mater. Interfaces 2019, 11, 7066–7073.

    Article  CAS  Google Scholar 

  24. Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 2010, 4, 5763–5772.

    Article  CAS  Google Scholar 

  25. Pérez-Mayen, L.; Oliva, J.; Torres-Castro, A.; De la Rosa, E. SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes. Nanoscale 2015, 7, 10249–10258.

    Article  Google Scholar 

  26. Han, B. B.; Ma, N.; Guo, S.; Yu, J. H.; Xiao, L.; Park, Y.; Park, E.; Jin, S.; Chen, L.; Jung, Y. M. Size-dependent surface-enhanced Raman scattering activity of Ag@CuxOS yolk-shell nanostructures: Surface plasmon resonance induced charge transfer. J. Phys. Chem. C 2020, 124, 16616–16623.

    Article  CAS  Google Scholar 

  27. Zhang, Q. F.; Large, N.; Nordlander, P.; Wang, H. Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS. J. Phys. Chem. Lett. 2014, 5, 370–374.

    Article  CAS  Google Scholar 

  28. Farokhnezhad, M.; Esmaeilzadeh, M. Optical and photothermal properties of graphene coated Au-Ag hollow nanoshells: A modeling for efficient photothermal therapy. J. Phys. Chem. C 2019, 123, 28907–28918.

    Article  Google Scholar 

  29. Leng, C. B.; Zhang, X.; Xu, F. X.; Yuan, Y.; Pei, H.; Sun, Z. H.; Li, L.; Bao, Z. H. Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion efficiency and photostability. Small 2018, 14, 1703077.

    Article  Google Scholar 

  30. Deng, X. R.; Li, K.; Cai, X. C.; Liu, B.; Wei, Y.; Deng, K. R.; Xie, Z. X.; Wu, Z. J.; Ma, P. A.; Hou, Z. Y. et al. A hollow-structured CuS@Cu2S@Au nanohybrid: Synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics. Adv. Mater. 2017, 29, 1701266.

    Article  Google Scholar 

  31. Hou, G. Z.; Wang, Z. Y.; Ma, H. G.; Ji, Y.; Yu, L. W.; Xu, J.; Chen, K. J. High-temperature stable plasmonic and cavity resonances in metal nanoparticle-decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale 2019, 11, 14777–14784.

    Article  CAS  Google Scholar 

  32. Tang, L. J.; Li, S.; Han, F.; Liu, L. Q.; Xu, L. G.; Ma, W.; Kuang, H.; Li, A. K.; Wang, L. B.; Xu, C. L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosen. Bioelectron. 2015, 71, 7–12.

    Article  CAS  Google Scholar 

  33. Gao, M. M.; Zhu, L. L.; Peh, C. K.; Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 2019, 12, 841–864.

    Article  CAS  Google Scholar 

  34. Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; Fuentea, J. M. D. L. et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016, 10, 2375–2385.

    Article  CAS  Google Scholar 

  35. Ali, M. R.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.

    Article  CAS  Google Scholar 

  36. Tsai, M. F.; Chang, S. H. G.; Cheng, F. Y.; Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.

    Article  CAS  Google Scholar 

  37. Smitha, S. L.; Gopchandran, K. G.; Ravindran, T. R.; Prasad, V. S. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates. Nanotechnology 2011, 22, 265705.

    Article  CAS  Google Scholar 

  38. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Article  CAS  Google Scholar 

  39. Alexander, K. D.; Skinner, K.; Zhang, S. P.; Wei, H.; Lopez, R. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett. 2010, 10, 4488–4493.

    Article  CAS  Google Scholar 

  40. Li, Z. B.; Huang, H.; Tang, S. Y.; Li, Y.; Yu, X. F.; Wang, H. Y.; Li, P. H.; Sun, Z. B.; Zhang, H.; Liu, C. L. et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 2016, 74, 144–154.

    Article  CAS  Google Scholar 

  41. Yang, Y. B.; Yang, X. D.; Fu, L. N.; Zou, M. C.; Cao, A. Y.; Du, Y. P.; Yuan, Q.; Yan, C. H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Lett. 2018, 3, 1165–1171.

    Article  CAS  Google Scholar 

  42. Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  CAS  Google Scholar 

  43. Ding, S. J.; Zhang, H.; Yang, D. J.; Qiu, Y. H.; Nan, F.; Yang, Z. J.; Wang, J. F.; Wang, Q. Q.; Lin, H. Q. Magnetic plasmon-enhanced second-harmonic generation on colloidal gold nanocups. Nano Lett. 2019, 19, 2005–2011.

    Article  CAS  Google Scholar 

  44. Niu, K. Y.; Liu, M.; Persson, K. A.; Han, Y.; Zheng, H. M. Strain-mediated interfacial dynamics during Au-PbS core-shell nanostructure formation. ACS Nano 2016, 10, 6235–6240.

    Article  CAS  Google Scholar 

  45. Gao, J. X.; Bender, C. M.; Murphy, C. J. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 2003, 19, 9065–9070.

    Article  CAS  Google Scholar 

  46. Jiang, R. B.; Qin, F.; Liu, Y. J.; Ling, X. Y.; Guo, J.; Tang, M. H.; Cheng, S.; Wang, J. F. Colloidal gold nanocups with orientation-dependent plasmonic properties. Adv. Mater. 2016, 28, 6322–6331.

    Article  CAS  Google Scholar 

  47. Qiu, Y. H.; Ding, S. J.; Lin, Y. J.; Chen, K.; Yang, D. J.; Ma, S.; Li, X. G.; Lin, H. Q.; Wang, J. F.; Wang, Q. Q. Growth of Au hollow stars and harmonic excitation energy transfer. ACS Nano 2020, 14, 736–745.

    Article  CAS  Google Scholar 

  48. Lai, Y. H.; Cui, X. M.; Li, N. N.; Shao, L.; Zhang, W.; Wang, J. F.; Lin, H. Q. Asymmetric light scattering on heterodimers made of Au nanorods vertically standing on Au nanodisks. Adv. Optical Mater. 2021, 9, 2001595.

    Article  CAS  Google Scholar 

  49. Theiss, J.; Aykol, M.; Pavaskar, P.; Cronin, S. B. Plasmonic mode mixing in nanoparticle dimers with nm-separations via substratemediated coupling. Nano Res. 2014, 7, 1344–1354.

    Article  CAS  Google Scholar 

  50. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Nos. 11904332 and 11904270), the Zhejiang Provincial Natural Science Foundation of China (No. LQQ20A040001), and the Hubei Key Laboratory of Optical Information and Pattern Recognition by the Wuhan Institute of Technology (Nos. 202004 and 202010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Ma or Ququan Wang.

Electronic Supplementary Material

12274_2021_3740_MOESM1_ESM.pdf

Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Ma, L., Feng, J. et al. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 15, 2715–2721 (2022). https://doi.org/10.1007/s12274-021-3740-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3740-1

Keywords

Navigation