Skip to main content
Log in

Highly Uniform AuPt Bimetallic Nanoplates and Nanorings with Tunable Optical Properties and Enhanced Photothermal Conversion Performance in NIR-II Window

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Highly asymmetric bimetal nanostructures, such as AuPt nanorings and Au–Ag nanoplates, possess superior plasmonic properties owing to various synergistic effects between different components and diversified morphologies. Herein, we report a controllable growth of asymmetric Pt-Au nanoplates and Au@Pt nanorings with excellent photothermal conversion efficiency. Hexagonal Au nanoplates are used as templates, which is achieved through a transformation reaction from Au nanotriangles. Pt-Au nanoplates are prepared by a site-selective growth of Pt on the rim of obtained hexagonal Au nanoplates. Subsequently, Pt nanorings are obtained by a selective etching of Au, and a regrowth of Au on the Pt nanorings leads to bimetallic Au@Pt nanorings. The evolution of extinction spectra during the whole process is carefully studied. Under irradiation by 1064-nm laser located in the second near-infrared bio-window, the Pt-Au nanoplates exhibit excellent photothermal conversion, better than that of initial Au nanotriangles and hexagonal Au nanoplates with same mass concentration. The improvement of photothermal effect can be ascribed to the strong surface plasmon resonances and coupling between Au and Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Informed consent was obtained from all subjects involved in the study. The data presented in this study are available on request from the corresponding author.

References

  1. Chen H, Shao L, Ming T, Sun Z, Zhao C, Yang B, Wang J (2010) Understanding the photothermal conversion efficiency of gold nanocrystals. Small 620:2272–2280. https://doi.org/10.1002/smll.201001109

    Article  CAS  Google Scholar 

  2. Lv Q, Min H, Duan DB, Fang W, Pan GM, Shen AG, Wang QQ, Nie G, Hu JM (2019) Total aqueous synthesis of Au@Cu2-xS core-shell nanoparticles for in vitro and in vivo SERS/PA imaging-guided photothermal cancer therapy. Adv Healthc Mater 8:2192–2640. https://doi.org/10.1002/adhm.201801257

    Article  CAS  Google Scholar 

  3. Zhang J, Feng Y, Mi J, Shen Y, Tu Z, Liu L (2018) Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. J Hazard Mater 342:121–130. https://doi.org/10.1016/j.jhazmat.2017.07.053

    Article  CAS  PubMed  Google Scholar 

  4. Lin H, Gao S, Dai C, Chen Y, Shi J (2017) A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc 13945:16235–16247. https://doi.org/10.1021/jacs.7b07818

    Article  CAS  Google Scholar 

  5. Li C, Li F, Zhang Y, Zhang W, Zhang XE, Wang Q (2015) Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 912:12255–12263. https://doi.org/10.1021/acsnano.5b05503

    Article  CAS  Google Scholar 

  6. Wu D, Chen X, Zhou J, Chen Y, Wan T, Wang Y, Lin A, Ruan Y, Chen Z, Song X, Fang W, Duan H, Ping Y (2020) A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. Mater Horizons 711:2929–2935. https://doi.org/10.1039/d0mh00870b

    Article  CAS  Google Scholar 

  7. Ma Z, Zhang Y, Zhang J, Zhang W, Foda MF, Dai X, Han H (2020) Ultrasmall peptide-coated platinum nanoparticles for precise NIR-II photothermal therapy by mitochondrial targeting. ACS Appl Mater Interfaces 1235:39434–39443. https://doi.org/10.1021/acsami.0c11469

    Article  CAS  Google Scholar 

  8. Xie X, van Huis MA, van Blaaderen A (2021) Symmetric and asymmetric epitaxial growth of metals (Ag, Pd, and Pt) onto Au nanotriangles: effects of reductants and plasmonic properties. Nanoscale 135:2902–2913. https://doi.org/10.1039/d0nr06789j

    Article  CAS  Google Scholar 

  9. Zhang WC, Luoshan MD, Wang PF, Huang CY, Wang QQ, Ding SJ, Zhou L (2020) Growth of porous Ag@AuCu trimetal nanoplates assisted by self-assembly. Nanomaterials (Basel) 1011. https://doi.org/10.3390/nano10112207

  10. Liu XD, Chen B, Wang GG, Ma S, Cheng L, Liu W, Zhou L, Wang QQ (2021) Controlled growth of hierarchical Bi2Se3/CdSe‐Au nanorods with optimized photothermal conversion and demonstrations in photothermal therapy. Adv Funct Mater 3143. https://doi.org/10.1002/adfm.202104424

  11. Kuwahara S, Narita Y, Mizuno L, Kurotsu H, Yoshino H, Kuwahara M (2020) Localized surface plasmon resonance-induced welding of gold nanotriangles and the local plasmonic properties for multicolor sensing and light-harvesting applications. ACS Appl Nano Mater 36:5172–5177. https://doi.org/10.1021/acsanm.0c00608

    Article  CAS  Google Scholar 

  12. Li K, Ma X, He S, Wang L, Yang X, Zhang G, Guan S, Qu X, Zhou S, Xu B (2022) Ultrathin nanosheet-supported Ag@Ag2O core-shell nanoparticles with vastly enhanced photothermal conversion efficiency for NIR-II-triggered photothermal therapy. ACS Biomater Sci Eng 82:540–550. https://doi.org/10.1021/acsbiomaterials.1c01291

    Article  CAS  Google Scholar 

  13. Liebig F, Sarhan RM, Prietzel C, Schmitt CNZ, Bargheer M, Koetz J (2018) Tuned surface-enhanced Raman scattering performance of undulated Au@Ag triangles. ACS Appl Nano Mater 14:1995–2003. https://doi.org/10.1021/acsanm.8b00570

    Article  CAS  Google Scholar 

  14. Guo A, Fu Y, Wang G, Wang X (2017) Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. RSC Adv 78:4815–4824. https://doi.org/10.1039/c6ra26979f

    Article  CAS  Google Scholar 

  15. Wang F, Li C, Chen H, Jiang R, Sun LD, Li Q, Wang J, Yu JC, Yan CH (2013) Plasmonic harvesting of light energy for Suzuki coupling reactions. J Am Chem Soc 13515:5588–5601. https://doi.org/10.1021/ja310501y

    Article  CAS  Google Scholar 

  16. Bi C, Chen J, Chen Y, Song Y, Li A, Li S, Mao Z, Gao C, Wang D, Möhwald H, Xia H (2018) Realizing a record photothermal conversion efficiency of spiky gold nanoparticles in the second near-infrared window by structure-based rational design. Chem Mater 308:2709–2718. https://doi.org/10.1021/acs.chemmater.8b00312

    Article  CAS  Google Scholar 

  17. Lindley SA, Zhang JZ (2019) Bumpy hollow gold nanospheres for theranostic applications: effect of surface morphology on photothermal conversion efficiency. ACS Appl Nano Mater 22:1072–1081. https://doi.org/10.1021/acsanm.8b02331

    Article  CAS  Google Scholar 

  18. Ma L, Chen K, Nan F, Wang JH, Yang DJ, Zhou L, Wang QQ (2016) Improved hydrogen production of Au-Pt-CdS hetero-nanostructures by efficient plasmon-induced multipathway electron transfer. Adv Funct Mater 2633:6076–6083. https://doi.org/10.1002/adfm.201601651

    Article  CAS  Google Scholar 

  19. Zhang YH, Li JJ, Rong H, Tong XW, Wang ZH (2017) Self-template synthesis of Ag-Pt hollow nanospheres as electrocatalyst for methanol oxidation reaction. Langmuir 3324:5991–5997. https://doi.org/10.1021/acs.langmuir.7b00647

    Article  CAS  Google Scholar 

  20. Zheng ZK, Tachikawa T, Majima T (2014) Single-particle study of Pt-modified au nanorods for plasmon enhanced hydrogen generation in visible to near-infrared region. J Am Chem Soc 13619:6870–6873. https://doi.org/10.1021/ja502704n

    Article  CAS  Google Scholar 

  21. Tang J, Jiang X, Wang L, Zhang H, Hu Z, Liu Y, Wu X, Chen C (2014) Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. Nanoscale 67:3670–3678. https://doi.org/10.1039/c3nr06841b

    Article  CAS  Google Scholar 

  22. Yang Y, Chen M, Wu Y, Wang P, Zhao Y, Zhu W, Song Z, Zhang XB (2019) Ultrasound assisted one-step synthesis of Au@Pt dendritic nanoparticles with enhanced NIR absorption for photothermal cancer therapy. RSC Adv 949:28541–28547. https://doi.org/10.1039/c9ra04286e

    Article  CAS  Google Scholar 

  23. Leng C, Zhang X, Xu F, Yuan Y, Pei H, Sun Z, Li L, Bao Z (2018) Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion efficiency and photostability. Small 1412:e1703077. https://doi.org/10.1002/smll.201703077

  24. Qin F, Zhao T, Jiang R, Jiang N, Ruan Q, Wang J, Sun LD, Yan CH, Lin HQ (2015) Thickness control produces gold nanoplates with their plasmon in the visible and near-infrared regions. Adv Opt Mater 41:76–85. https://doi.org/10.1002/adom.201500496

    Article  CAS  Google Scholar 

  25. Jang HJ, Ham S, Acapulco JA Jr, Song Y, Hong S, Shuford KL, Park S (2014) Fabrication of 2D Au nanorings with Pt framework. J Am Chem Soc 13650:17674–17680. https://doi.org/10.1021/ja510916y

    Article  CAS  Google Scholar 

  26. Hilal H, Zhao Q, Kim J, Lee S, Haddadnezhad M, Yoo S, Lee S, Park W, Park W, Lee J, Lee JW, Jung I, Park S (2022) Three-dimensional nanoframes with dual rims as nanoprobes for biosensing. Nat Commun 131:4813. https://doi.org/10.1038/s41467-022-32549-w

    Article  CAS  Google Scholar 

  27. Ahn J, Qin D (2019) Fabrication of nanoscale cage cubes by drilling orthogonal, intersected holes through all six side faces of Ag nanocubes. Chem Mater 3121:9179–9187. https://doi.org/10.1021/acs.chemmater.9b03774

  28. Ma S, Yang DJ, Ding SJ, Liu J, Wang W, Wu ZY, Liu XD, Zhou L, Wang QQ (2021) Tunable size dependence of quantum plasmon of charged gold nanoparticles. Phys Rev Lett 12617:173902. https://doi.org/10.1103/PhysRevLett.126.173902

  29. Zhang ZW, Ahn J, Kim J, Wu Z, Qin D (2018) Facet-selective deposition of Au and Pt on Ag nanocubes for the fabrication of bifunctional Ag@Au-Pt nanocubes and trimetallic nanoboxes. Nanoscale 1018:8642–8649. https://doi.org/10.1039/c8nr01794h

    Article  CAS  Google Scholar 

  30. Wang PF, Chen K, Ma S, Wang W, Qiu YH, Ding SJ, Liang S, Wang QQ (2020) Asymmetric synthesis of Au-CdSe core-semishell nanorods for plasmon-enhanced visible-light-driven hydrogen evolution. Nanoscale 122:687–694. https://doi.org/10.1039/c9nr09370b

    Article  CAS  Google Scholar 

  31. Ma L, Liang S, Liu XL, Yang DJ, Zhou L, Wang QQ (2015) Synthesis of dumbbell-like gold-metal sulfide core-shell nanorods with largely enhanced transverse plasmon resonance in visible region and efficiently improved photocatalytic activity. Adv Funct Mater 256:898–904. https://doi.org/10.1002/adfm.201403398

    Article  CAS  Google Scholar 

  32. Guo X, Li X, Kou S, Yang X, Hu X, Ling D, Yang J (2018) Plasmon-enhanced electrocatalytic hydrogen/oxygen evolution by Pt/Fe–Au nanorods. J Mater Chem A 617:7364–7369. https://doi.org/10.1039/c8ta00499d

    Article  CAS  Google Scholar 

  33. Zhong Y, Ma S, Chen K, Wang PF, Qiu YH, Liang S, Zhou L, Chen Y, Wang QQ (2020) Controlled growth of plasmonic heterostructures and their applications. Sci China Mater 638:1398–1417. https://doi.org/10.1007/s40843-019-1262-6

    Article  Google Scholar 

  34. Szustakiewicz P, Gonzalez-Rubio G, Scarabelli L, Lewandowski W (2019) Robust synthesis of gold nanotriangles and their self-assembly into vertical arrays. ChemistryOpen 86:705–711. https://doi.org/10.1002/open.201900082

    Article  CAS  Google Scholar 

  35. Scarabelli L, Coronado-Puchau M, Giner-Casares JJ, Langer J, Liz-Marzan LM (2014) Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced raman scattering. ACS Nano 86:5833–5842. https://doi.org/10.1021/nn500727w

    Article  CAS  Google Scholar 

  36. Haddadnezhad M, Yoo S, Kim J, Kim JM, Son J, Jeong HS, Park D, Nam JM, Park S (2020) Synthesis and surface plasmonic characterization of asymmetric Au split nanorings. Nano Lett 2010:7774–7782. https://doi.org/10.1021/acs.nanolett.0c03385

    Article  CAS  Google Scholar 

  37. Chow TH, Lai Y, Cui X, Lu W, Zhuo X, Wang J (2019) Colloidal gold nanorings and their plasmon coupling with gold nanospheres. Small 1535:e1902608. https://doi.org/10.1002/smll.201902608

  38. Fan NN, Yang Y, Wang WF, Zhang LJ, Chen W, Zou C, Huang SM (2012) Selective etching induces selective growth and controlled formation of various platinum nanostructures by modifying seed surface free energy. ACS Nano 65:4072–7082. https://doi.org/10.1021/nn3004668

  39. Jang HJ, Hong S, Park S (2012) Shape-controlled synthesis of Pt nanoframes. J Mater Chem 2237:19792–19797. https://doi.org/10.1021/10.1039/c2jm34187e

    Article  Google Scholar 

  40. Agarwal K, Dai C, Joung D, Cho JH (2019) Nano-architecture driven plasmonic field enhancement in 3D graphene structures. ACS Nano 132:1050–1059. https://doi.org/10.1021/acsnano.8b08145

    Article  CAS  Google Scholar 

  41. Tian L, Gandra N, Singamaneni S (2013) Monitoring controlled release of payload from gold nanocages using surface enhanced raman scattering. ACS Nano 75:4252–4260. https://doi.org/10.1021/nn400728t

    Article  CAS  Google Scholar 

  42. Luan J, Liu KK, Tadepalli S, Jiang Q, Morrissey JJ, Kharasch ED, Singamaneni S (2016) PEGylated artificial antibodies: plasmonic biosensors with improved selectivity. ACS Appl Mater Interfaces 836:23509–23516. https://doi.org/10.1021/acsami.6b07252

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key R&D Program of China (grant no. 2020YFA0211300) and the National Natural Science Foundation of China (grant nos. 12174294, 12074296, and 11874293).

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and M.D.L. designed and supervised the work. Y.Y. performed the sample preparation and data collection with the help of F.Y.Z., H.Y.Y., and G.W.L. Y.Y. and X.L. performed the photothermal measurement and analysis. C.Y.H. discussed the data analysis. The manuscript was written and revised by Y.Y., M.D.L., and L.Z. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng-Dai Luoshan, Chu-Yun Huang or Li Zhou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Long, X., Zhang, FY. et al. Highly Uniform AuPt Bimetallic Nanoplates and Nanorings with Tunable Optical Properties and Enhanced Photothermal Conversion Performance in NIR-II Window. Plasmonics 18, 889–897 (2023). https://doi.org/10.1007/s11468-023-01799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01799-9

Keywords

Navigation