Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.
Google Scholar
Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal. 2017, 7, 2624–2643.
CAS
Google Scholar
Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.
Google Scholar
Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062.
CAS
Google Scholar
Choi, J.; Suryanto, B. H. R.; Wang, D. B.; Du, H. L.; Hodgetts, R. Y.; Ferrero Vallana, F. M.; MacFarlane, D. R.; Simonov, A. N. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 2020, 11, 5546.
CAS
Google Scholar
Service, R. F. Liquid sunshine. Science 2018, 361, 120–123.
CAS
Google Scholar
Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.
CAS
Google Scholar
Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.
CAS
Google Scholar
Iwamoto, M.; Akiyama, M.; Aihara, K.; Deguchi, T. Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catal. 2017, 7, 6924–6929.
CAS
Google Scholar
Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 2017, 7, 706–709.
CAS
Google Scholar
MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Ferrero Vallana, F. M.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.
CAS
Google Scholar
Leigh, G. J. Fixing nitrogen any which way. Science 1998, 279, 506–507.
CAS
Google Scholar
Spatzal, T.; Aksoyoglu, M.; Zhang, L. M.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Evidence for interstitial carbon in nitrogenase femo cofactor. Science 2011, 334, 940.
CAS
Google Scholar
Tanifuji, K.; Ohki, Y. Metal-sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 2020, 120, 5194–5251.
CAS
Google Scholar
Chica, B.; Ruzicka, J.; Kallas, H.; Mulder, D. W.; Brown, K. A.; Peters, J. W.; Seefeldt, L. C.; Dukovic, G.; King, P. W. Defining intermediates of nitrogenase MoFe protein during N2 reduction under photochemical electron delivery from CdS quantum dots. J. Am. Chem. Soc. 2020, 142, 14324–14330.
CAS
Google Scholar
Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y. L.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 2011, 334, 974–977.
CAS
Google Scholar
Rao, L.; Xu, X.; Adamo, C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase. ACS Catal. 2016, 6, 1567–1577.
CAS
Google Scholar
Hu, Y. L.; Ribbe, M. W. Decoding the nitrogenase mechanism: The homologue approach. Acc. Chem. Res. 2010, 43, 475–484.
CAS
Google Scholar
Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.
CAS
Google Scholar
Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.
CAS
Google Scholar
Schlögl, R. Ammonia synthesis. In Handbook of Heterogeneous Catalysis. Ertl, G.; Knözinger, H.; Weitkamp, J., Eds.; Wiley: Weinheim, 2008; pp 2501–2575.
Google Scholar
Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The haber-bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723–12726.
CAS
Google Scholar
Liu, H. Z. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chin. J. Catal. 2014, 35, 1619–1640.
CAS
Google Scholar
Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Electrocatalytic reduction of nitrogen: From haber-bosch to ammonia artificial leaf. Chem 2019, 5, 263–283.
Google Scholar
Smith, B. E. Nitrogenase reveals its inner secrets. Science 2002, 297, 1654–1655.
CAS
Google Scholar
Wang, Q. R.; Guo, J. P.; Chen, P. Recent progress towards mild-condition ammonia synthesis. J. Energy Chem. 2019, 36, 25–36.
Google Scholar
Shi, R.; Zhang, X. R.; Waterhouse, G. I. N.; Zhao, Y. X.; Zhang, T. R. The journey toward low temperature, low pressure catalytic nitrogen fixation. Adv. Energy Mater. 2020, 10, 2000659.
CAS
Google Scholar
Zheng, J. Y.; Jiang, L.; Lyu, Y.; Jian, S. P.; Wang, S. Y. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12192.
Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.
Google Scholar
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.
CAS
Google Scholar
Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919–924.
CAS
Google Scholar
Liang, X. Y.; Deng, X. X.; Guo, C.; Wu, C. M. L. Activity origin and design principles for atomic vanadium anchoring on phosphorene monolayer for nitrogen reduction reaction. Nano Res. 2020, 13, 2925–2932.
CAS
Google Scholar
Li, R. G. Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis. Chin. J. Catal. 2018, 39, 1180–1188.
CAS
Google Scholar
Li, B. F.; Hu, Y. Z.; Shen, Z. W.; Ji, Z. Y.; Yao, L.; Zhang, S.; Zou, Y. T.; Tang, D. Y.; Qing, Y.; Wang, S. Q. et al. Photocatalysis driven by near-infrared light: Materials design and engineering for environmentally friendly photoreactions. ACS EST Eng. 2021, 1, 947–964.
CAS
Google Scholar
Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.
Google Scholar
Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.
CAS
Google Scholar
Zhang, G. Q.; Sewell, C. D.; Zhang, P. X.; Mi, H. W.; Lin, Z. Q. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 2020, 71, 104645.
CAS
Google Scholar
Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633.
CAS
Google Scholar
Mao, C. L.; Wang, J. X.; Zou, Y. J.; Li, H.; Zhan, G. M.; Li, J.; Zhao, J. C.; Zhang, L. Z. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chem. 2019, 21, 2852–2867.
CAS
Google Scholar
Schrauzer, G. N.; Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193.
CAS
Google Scholar
Zhang, N.; Li, L. G.; Shao, Q.; Zhu, T.; Huang, X. Q.; Xiao, X. H. Fe-doped biocl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation. ACS Appl. Energy Mater. 2019, 2, 8394–8398.
CAS
Google Scholar
Rong, X. S.; Chen, H. F.; Rong, J.; Zhang, X. Y.; Wei, J.; Liu, S.; Zhou, X. T.; Xu, J. C.; Qiu, F. X.; Wu, Z. R. An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement. Chem. Eng. J. 2019, 371, 286–293.
CAS
Google Scholar
Nazemi, M.; El-Sayed, M. A. Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au-Ag2O nanocages. Nano Energy 2019, 63, 103886.
CAS
Google Scholar
Zhang, S.; Zhao, Y. X.; Shi, R.; Zhou, C.; Waterhouse, G. I. N.; Wang, Z.; Weng, Y. X.; Zhang, T. R. Sub-3 nm ultrafine Cu2O for visible light driven nitrogen fixation. Angew. Chem., Int. Ed. 2021, 60, 2554–2560.
CAS
Google Scholar
Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Schottky junctions with Bi cocatalyst for taming aqueous phase N2 reduction toward enhanced solar ammonia production. Adv. Sci. 2021, 8, 2003626.
CAS
Google Scholar
Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B: Environ. 2017, 200, 323–329.
CAS
Google Scholar
Sultana, S.; Mansingh, S.; Parida, K. M. Phosphide protected FeS2 anchored oxygen defect oriented CeO2NS based ternary hybrid for electrocatalytic and photocatalytic N2 reduction to NH3. J. Mater. Chem. A 2019, 7, 9145–9153.
CAS
Google Scholar
Wang, Z. H.; Hu, X.; Liu, Z. Z.; Zou, G. J.; Wang, G. N.; Zhang, K. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal. 2019, 9, 10260–10278.
CAS
Google Scholar
Liu, S. Z.; Wang, S. B.; Jiang, Y.; Zhao, Z. Q.; Jiang, G. Y.; Sun, Z. Y. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 2019, 373, 572–579.
CAS
Google Scholar
Qin, J. Z.; Hu, X.; Li, X. Y.; Yin, Z. F.; Liu, B. J.; Lam, K. H. 0D/2D AgInS2/mxene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy 2019, 61, 27–35.
CAS
Google Scholar
Wang, S.; Li, B.; Li, L.; Tian, Z. Q.; Zhang, Q. J.; Chen, L.; Zeng, X. C. Highly efficient N2 fixation catalysts: Transition-metal carbides M2C (MXenes). Nanoscale 2020, 12, 538–547.
CAS
Google Scholar
Shiraishi, Y.; Shiota, S.; Kofuji, Y.; Hashimoto, M.; Chishiro, K.; Hirakawa, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency. ACS Appl. Energy Mater. 2018, 1, 4169–4177.
CAS
Google Scholar
Li, M. Q.; Huang, H.; Low, J.; Gao, C.; Long, R.; Xiong, Y. J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 2019, 3, 1800388.
Google Scholar
Zhou, P.; Chao, Y. G.; Lv, F.; Lai, J. P.; Wang, K.; Guo, S. J. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Sci. Bull. 2020, 65, 720–725.
CAS
Google Scholar
Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.
CAS
Google Scholar
Oshikiri, T.; Ueno, K.; Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem., Int. Ed. 2014, 53, 9802–9805.
CAS
Google Scholar
Xiong, J.; Song, P.; Di, J.; Li, H. M. Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chem. Eng. J. 2020, 402, 126208.
CAS
Google Scholar
Nowotny, J.; Alim, M. A.; Bak, T.; Idris, M. A.; Ionescu, M.; Prince, K.; Sahdan, M. Z.; Sopian, K.; Mat Teridi, M. A.; Sigmund, W. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev. 2015, 44, 8424–8442.
CAS
Google Scholar
Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.
Google Scholar
Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.
CAS
Google Scholar
Tan, X. N.; Zhang, J. L.; Tan, D. X.; Shi, J. B.; Cheng, X. Y.; Zhang, F. Y.; Liu, L. F.; Zhang, B. X.; Su, Z. Z.; Han, B. X. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photo-catalytic hydrogen production. Nano Res. 2019, 12, 1967–1972.
Google Scholar
Fugate, E. A.; Biswas, S.; Clement, M. C.; Kim, M.; Kim, D.; Asthagiri, A.; Baker, L. R. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Res. 2019, 12, 2390–2399.
CAS
Google Scholar
Li, H.; Li, W. J.; Li, W.; Chen, M. F.; Snyders, R.; Bittencourt, C.; Yuan, Z. H. Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 2020, 13, 583–590.
CAS
Google Scholar
Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.
CAS
Google Scholar
Li, H.; Mao, C. L.; Shang, H.; Yang, Z. P.; Ai, Z. H.; Zhang, L. Z. New opportunities for efficient N2 fixation by nanosheet photocatalysts. Nanoscale 2018, 10, 15429–15435.
CAS
Google Scholar
Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.
CAS
Google Scholar
Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936.
CAS
Google Scholar
Wang, Z.; Fan, C. C.; Shen, Z. X.; Hua, C. Q.; Hu, Q. F.; Sheng, F.; Lu, Y. H.; Fang, H. Y.; Qiu, Z. Z.; Lu, J. et al. Defects controlled hole doping and multivalley transport in snse single crystals. Nat. Commun. 2018, 9, 47.
CAS
Google Scholar
Liu, Z. C.; Huang, T.; Chang, H. H.; Wang, F. X.; Wen, J.; Sun, H. D.; Hossain, M.; Xie, Q. J.; Zhao, Y.; Wu, Y. P. Computational design of single mo atom anchored defective boron phosphide monolayer as a high-performance electrocatalyst for the nitrogen reduction reaction. Energy Environ. Mater. 2021, 4, 255–262.
CAS
Google Scholar
Gao, L. L.; Tang, C. Y.; Liu, J. C.; He, L. L.; Wang, H. B.; Ke, Z. J.; Li, W. Q.; Jiang, C. Z.; He, D.; Cheng, L. et al. Oxygen vacancy-induced electron density tuning of Fe3O4 for enhanced oxygen evolution catalysis. Energy Environ. Mater., 2021, 4, 392–398.
CAS
Google Scholar
Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. J. Energy Chem. 2019, 37, 43–57.
Google Scholar
Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. R. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739–9750.
CAS
Google Scholar
Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.
CAS
Google Scholar
Hao, Q.; Liu, C. W.; Jia, G. H.; Wang, Y.; Arandiyan, H.; Wei, W.; Ni, B. J. Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects. Mater. Horiz. 2020, 7, 1014–1029.
CAS
Google Scholar
Roberts, M. W. Development of the industrial relevance of catalysis and its physiochemical basis (1860–1940). Catal. Lett. 2000, 67, 5–13.
Google Scholar
Strongin, D. R.; Somorjai, G. A. The effects of potassium on ammonia synthesis over iron single-crystal surfaces. J. Catal. 1988, 109, 51–60.
CAS
Google Scholar
Hinrichsen, O.; Rosowski, F.; Muhler, M.; Ertl, G. The microkinetics of ammonia synthesis catalyzed by cesium-promoted supported ruthenium. Chem. Eng. Sci. 1996, 51, 1683–1690.
CAS
Google Scholar
Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.
Google Scholar
Dahl, S.; Törnqvist, E.; Jacobsen, C. J. H. Dissociative adsorption of dinitrogen on a multipromoted iron-based ammonia synthesis catalyst: Linking properties of catalysts and single-crystal surfaces. J. Catal. 2001, 198, 97–102.
CAS
Google Scholar
Shen, H. D.; Peppel, T.; Strunk, J.; Sun, Z. Y. Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Sol. RRL 2020, 4, 1900546.
CAS
Google Scholar
Li, J.; Li, H.; Zhan, G. M.; Zhang, L. Z. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 2017, 50, 112–121.
CAS
Google Scholar
Chen, X.; Li, J. Y.; Tang, Z. R.; Xu, Y. J. Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks. Catal. Sci. Technol. 2020, 10, 6098–6110.
CAS
Google Scholar
Huang, Y. W.; Zhang, N.; Wu, Z. J.; Xie, X. Q. Artificial nitrogen fixation over bismuth-based photocatalysts: Fundamentals and future perspectives. J. Mater. Chem. A 2020, 8, 4978–4995.
CAS
Google Scholar
Huang, T.; Pan, S. G.; Shi, L. L.; Yu, A. P.; Wang, X.; Fu, Y. S. Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: A high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale 2020, 12, 1833–1841.
CAS
Google Scholar
Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.
CAS
Google Scholar
Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604.
CAS
Google Scholar
Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57, 122–138.
CAS
Google Scholar
van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.
CAS
Google Scholar
Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.
CAS
Google Scholar
Hu, C. Y.; Chen, X.; Jin, J. B.; Han, Y.; Chen, S. M.; Ju, H. X.; Cai, J.; Qiu, Y. R.; Gao, C.; Wang, C. M. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019, 141, 7807–7814.
CAS
Google Scholar
Lukoyanov, D.; Dikanov, S. A.; Yang, Z. Y.; Barney, B. M.; Samoilova, R. I.; Narasimhulu, K. V.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Endor/hyscore studies of the common intermediate trapped during nitrogenase reduction of N2H2, CH3N2H, and N2H4 support an alternating reaction pathway for N2 reduction. J. Am. Chem. Soc. 2011, 133, 11655–11664.
CAS
Google Scholar
Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.
CAS
Google Scholar
Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.
CAS
Google Scholar
Li, X. M.; Sun, X.; Zhang, L.; Sun, S. M.; Wang, W. Z. Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4. J. Mater. Chem. A 2018, 6, 3005–3011.
CAS
Google Scholar
Zhao, W. R.; Xi, H. P.; Zhang, M.; Li, Y. J.; Chen, J. S.; Zhang, J.; Zhu, X. Enhanced quantum yield of nitrogen fixation for hydrogen storage with in situ-formed carbonaceous radicals. Chem. Commun. 2015, 51, 4785–4788.
CAS
Google Scholar
Guo, Y. Z.; Yang, J. H.; Wu, D. H.; Bai, H. Y.; Yang, Z.; Wang, J. F.; Yang, B. C. Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation. J. Mater. Chem. A 2020, 8, 16218–16231.
CAS
Google Scholar
Cao, S. H.; Chen, H.; Jiang, F.; Wang, X. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. Appl. Catal. B: Environ. 2018, 224, 222–229.
CAS
Google Scholar
Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 2011, 133, 3964–3971.
CAS
Google Scholar
Zhao, Y. X.; Shi, R.; Bian, X. A. N.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Adv. Sci. 2019, 6, 1802109.
Google Scholar
Gao, X.; Wen, Y. J.; Qu, D.; An, L.; Luan, S. L.; Jiang, W. S.; Zong, X. P.; Liu, X. Y.; Sun, Z. C. Interference effect of alcohol on nessler’s reagent in photocatalytic nitrogen fixation. ACS Sustain. Chem. Eng. 2018, 6, 5342–5348.
CAS
Google Scholar
Yuan, S. J.; Chen, J. J.; Lin, Z. Q.; Li, W. W.; Sheng, G. P.; Yu, H. Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249.
Google Scholar
Liu, Y. W.; Cheng, M.; He, Z. H.; Gu, B. C.; Xiao, C.; Zhou, T. F.; Guo, Z. P.; Liu, J. D.; He, H. Y.; Ye, B. J. et al. Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem., Int. Ed. 2019, 58, 731–735.
CAS
Google Scholar
Shiraishi, Y.; Hashimoto, M.; Chishiro, K.; Moriyama, K.; Tanaka, S.; Hirai, T. Photocatalytic dinitrogen fixation with water on bismuth oxychloride in chloride solutions for solar-to-chemical energy conversion. J. Am. Chem. Soc. 2020, 142, 7574–7583.
CAS
Google Scholar
Ren, W. J.; Mei, Z. W.; Zheng, S. S.; Li, S. N.; Zhu, Y. M.; Zheng, J. X.; Lin, Y.; Chen, H. B.; Gu, M.; Pan, F. et al. Wavelength-dependent solar N2 fixation into ammonia and nitrate in pure water. Research 2020, 2020, 3750314.
CAS
Google Scholar
Yang, J. H.; Bai, H. Y.; Guo, Y. Z.; Zhang, H.; Jiang, R. B.; Yang, B. C.; Wang, J. F.; Yu, J. C. Photodriven disproportionation of nitrogen and its change to reductive nitrogen photofixation. Angew. Chem., Int. Ed. 2021, 60, 927–936.
CAS
Google Scholar
George, S.; Pokhrel, S.; Ji, Z. X.; Henderson, B. L.; Xia, T.; Li, L. J.; Zink, J. I.; Nel, A. E.; Mädler, L. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J. Am. Chem. Soc. 2011, 133, 11270–11278.
CAS
Google Scholar
Teranishi, M.; Naya, S. I.; Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium (IV) dioxide photocatalyst. J. Am. Chem. Soc. 2010, 132, 7850–7851.
CAS
Google Scholar
Ran, M. X.; Cui, W.; Li, K. L.; Chen, L.; Zhang, Y. X.; Dong, F.; Sun, Y. J. Light-induced dynamic stability of oxygen vacancies in BiSbO4 for efficient photocatalytic formaldehyde degradation. Energy Environ. Mater., in press, DOI: https://doi.org/10.1002/eem2.12176.
Shen, H. D.; Choi, C.; Masa, J.; Li, X.; Qiu, J. S.; Jung, Y.; Sun, Z. Y. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem, 2021, 7, 1708–1754.
CAS
Google Scholar
Ivančič, I.; Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 1984, 18, 1143–1147.
Google Scholar
Yuen, S. H.; Pollard, A. G. Determination of nitrogen in agricultural materials by the nessler reagent. II. —Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric. 1954, 5, 364–369.
CAS
Google Scholar
Nielander, A. C.; McEnaney, J. M.; Schwalbe, J. A.; Baker, J. G.; Blair, S. J.; Wang, L.; Pelton, J. G.; Andersen, S. Z.; Enemark-Rasmussen, K.; Čolič, V. et al. A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques. ACS Catal. 2019, 9, 5797–5802.
CAS
Google Scholar
Zaffaroni, R.; Ripepi, D.; Middelkoop, J.; Mulder, F. M. Gas chromatographic method for in situ ammonia quantification at parts per billion levels. ACS Energy Lett. 2020, 5, 3773–3777.
CAS
Google Scholar
Liu, Y. C.; Asset, T.; Chen, Y. C.; Murphy, E.; Potma, E. O.; Matanovic, I.; Fishman, D. A.; Atanassov, P. Facile all-optical method for in situ detection of low amounts of ammonia. iScience 2020, 23, 101757.
CAS
Google Scholar
Duan, G. Y.; Ren, Y.; Tang, Y.; Sun, Y. Z.; Chen, Y. M.; Wan, P. Y.; Yang, X. J. Improving the reliability and accuracy of ammonia quantification in electro- and photochemical synthesis. ChemSusChem 2020, 13, 88–96.
CAS
Google Scholar
Yang, C. C.; Yu, Y. H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? J. Am. Chem. Soc. 2010, 132, 8398–8406.
CAS
Google Scholar
Moustakas, N. G.; Strunk, J. Photocatalytic CO2 reduction on TiO2-based materials under controlled reaction conditions: Systematic insights from a literature study. Chem. Eur. J. 2018, 24, 12739–12746.
CAS
Google Scholar
Andersen, S. Z.; Čolič, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.
CAS
Google Scholar
Greenlee, L. F.; Renner, J. N.; Foster, S. L. The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 2018, 8, 7820–7827.
CAS
Google Scholar
Minteer, S. D.; Christopher, P.; Linic, S. Recent developments in nitrogen reduction catalysts: A virtual issue. ACS Energy Lett. 2019, 4, 163–166.
CAS
Google Scholar
Xu, H. C.; Wang, Y.; Dong, X. L.; Zheng, N.; Ma, H. C.; Zhang, X. F. Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl. Catal. B: Environ. 2019, 257, 117932.
CAS
Google Scholar
Li, L. Q.; Tang, C.; Yao, D. Z.; Zheng, Y.; Qiao, S. Z. Electrochemical nitrogen reduction: Identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019, 4, 2111–2116.
CAS
Google Scholar
Comer, B. M.; Liu, Y. H.; Dixit, M. B.; Hatzell, K. B.; Ye, Y. F.; Crumlin, E. J.; Hatzell, M. C.; Medford, A. J. The role of adventitious carbon in photo-catalytic nitrogen fixation by titania. J. Am. Chem. Soc. 2018, 140, 15157–15160.
CAS
Google Scholar
Li, D. H.; Li, J. J.; Jin, Q. W.; Ren, Z. P.; Sun, Y. W.; Zhang, R. Q.; Zhai, Y. P.; Liu, Y. G. Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation. J. Colloid Interface Sci. 2019, 537, 256–261.
CAS
Google Scholar
Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
Google Scholar
Battino, R.; Rettich, T. R.; Tominaga, T. The solubility of nitrogen and air in liquids. J. Phys. Chem. Ref. Data 1984, 13, 563–600.
CAS
Google Scholar
Ali, M.; Zhou, F. L.; Chen, K.; Kotzur, C.; Xiao, C. L.; Bourgeois, L.; Zhang, X. Y.; MacFarlane, D. R. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmonenhanced black silicon. Nat. Commun. 2016, 7, 11335.
CAS
Google Scholar
Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.
CAS
Google Scholar
Hu, L.; Xing, Z.; Feng, X. F. Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Lett. 2020, 5, 430–436.
CAS
Google Scholar
Feng, Y. L.; Zhang, Z. S.; Zhao, K.; Lin, S. L.; Li, H.; Gao, X. Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. J. Colloid Interface Sci. 2021, 583, 499–509.
CAS
Google Scholar
Yan, D. F.; Li, H.; Chen, C.; Zou, Y. Q.; Wang, S. Y. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.
Google Scholar
Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706.
CAS
Google Scholar
Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.
CAS
Google Scholar
Zhou, W.; Fu, H. G. Defect-mediated electron-hole separation in semiconductor photocatalysis. Inorg. Chem. Front. 2018, 5, 1240–1254.
CAS
Google Scholar
Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.
CAS
Google Scholar
Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.
Google Scholar
Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem., Int. Ed. 2020, 59, 3685–3690.
CAS
Google Scholar
Feng, H. F.; Xu, Z. F.; Ren, L.; Liu, C.; Zhuang, J. C.; Hu, Z. P.; Xu, X.; Chen, J.; Wang, J. O.; Hao, W. C. et al. Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catal. 2018, 8, 4288–4293.
CAS
Google Scholar
Beyerlein, I. J.; Demkowicz, M. J.; Misra, A.; Uberuaga, B. P. Defect-interface interactions. Prog. Mater. Sci. 2015, 74, 125–210.
CAS
Google Scholar
Zhou, Y. G.; Zhang, Z. Z.; Fang, Z. W.; Qiu, M.; Ling, L.; Long, J. L.; Chen, L.; Tong, Y. C.; Su, W. Y.; Zhang, Y. F. et al. Defect engineering of metal-oxide interface for proximity of photooxidation and photoreduction. Proc. Natl. Acad. Sci. USA 2019, 116, 10232–10237.
CAS
Google Scholar
Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-II to z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.
CAS
Google Scholar
Gao, H. H.; Cao, R. Y.; Xu, X. T.; Zhang, S. W.; Yongshun, H.; Yang, H. C.; Deng, X. L.; Li, J. X. Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 245, 399–409.
CAS
Google Scholar
Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.
Google Scholar
Naliwajko, P.; Strunk, J. Photocatalysis-the heterogeneous catalysis perspective. In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution. Strunk, J., Ed.; Wiley VCH: Weinheim, 2021; pp 384.
Google Scholar
Ran, L.; Hou, J. G.; Cao, S. Y.; Li, Z. W.; Zhang, Y. T.; Wu, Y. Z.; Zhang, B.; Zhai, P. L.; Sun, L. C. Defect engineering of photocatalysts for solar energy conversion. Sol. RRL 2020, 4, 1900487.
CAS
Google Scholar
Huang, Y. M.; Yu, Y.; Yu, Y. F.; Zhang, B. Oxygen vacancy engineering in photocatalysis. Sol. RRL 2020, 4, 2000037.
CAS
Google Scholar
Lan, M.; Zheng, N.; Dong, X. L.; Hua, C. H.; Ma, H. C.; Zhang, X. F. Bismuth-rich bismuth oxyiodide microspheres with abundant oxygen vacancies as an efficient photocatalyst for nitrogen fixation. Dalton Trans. 2020, 49, 9123–9129.
CAS
Google Scholar
Hao, Y. C.; Dong, X. L.; Zhai, S. R.; Ma, H. C.; Wang, X. Y.; Zhang, X. F. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem. Eur. J. 2016, 22, 18722–18728.
CAS
Google Scholar
Wang, J. P.; Lin, W.; Ran, Y.; Cui, J. Y.; Wang, L.; Yu, X. L.; Zhang, Y. H. Nanotubular TiO2 with remedied defects for photocatalytic nitrogen fixation. J. Phys. Chem. C 2020, 124, 1253–1259.
CAS
Google Scholar
Wang, H.; Bu, Y. D.; Wu, G.; Zou, X. The promotion of the photocatalytic nitrogen fixation ability of nitrogen vacancy-embedded graphitic carbon nitride by replacing the corner-site carbon atom with phosphorus. Dalton Trans. 2019, 48, 11724–11731.
CAS
Google Scholar
Wu, S. Q.; Chen, Z. Y.; Liu, K. D.; Yue, W. H.; Wang, L. Z.; Zhang, J. L. Chemisorption-induced and plasmon-promoted photofixation of nitrogen on gold-loaded carbon nitride nanosheets. ChemSusChem 2020, 13, 3455–3461.
CAS
Google Scholar
Liu, D. L.; Wang, C. H.; Yu, Y. F.; Zhao, B. H.; Wang, W. C.; Du, Y. H.; Zhang, B. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 2019, 5, 376–389.
CAS
Google Scholar
Ge, J. H.; Zhang, L.; Xu, J.; Liu, Y. J.; Jiang, D. C.; Du, P. W. Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chin. Chem. Lett. 2020, 31, 792–796.
CAS
Google Scholar
Zhang, Y. Z.; Chen, X.; Zhang, S. Y.; Yin, L. F.; Yang, Y. Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm. Chem. Eng. J. 2020, 401, 126033.
CAS
Google Scholar
Yang, X. L.; Wang, S. Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H. et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B: Environ. 2019, 259, 118088.
CAS
Google Scholar
Zheng, J. Y.; Lyu, Y.; Wang, R. L.; Xie, C.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 2018, 9, 3572.
Google Scholar
Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.
CAS
Google Scholar
Yang, J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497–8508.
CAS
Google Scholar
Wang, W. K.; Zhou, H. J.; Liu, Y. Y.; Zhang, S. B.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Formation of B-N-C coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance. Small 2020, 16, 1906880.
CAS
Google Scholar
Liang, C.; Niu, H. Y.; Guo, H.; Niu, C. G.; Huang, D. W.; Yang, Y. Y.; Liu, H. Y.; Shao, B. B.; Feng, H. P. Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: Defect-dopant strategy of nitrogen defect and boron dopant. Chem. Eng. J. 2020, 396, 125395.
CAS
Google Scholar
Zhao, Y. F.; Wang, E. D.; Jin, R. R. The effect of oxygen on the N2 photofixation ability over N vacancies embedded g-C3N4 prepared by dielectric barrier discharge plasma treatment. Diam. Relat. Mater. 2019, 94, 146–154.
CAS
Google Scholar
Liu, M. X.; Wang, Y. C.; Kong, X. H.; Tan, L. D.; Li, L.; Cheng, S. B.; Botton, G.; Guo, H.; Mi, Z. T.; Li, C. J. Efficient nitrogen fixation catalyzed by gallium nitride nanowire using nitrogen and water. iScience 2019, 17, 208–216.
CAS
Google Scholar
Li, Z.; Gu, G. Z.; Hu, S. Z.; Zou, X.; Wu, G. Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chin. J. Catal. 2019, 40, 1178–1186.
CAS
Google Scholar
Li, G.; Yang, W. Y.; Gao, S.; Shen, Q. Q.; Xue, J. B.; Chen, K. X.; Li, Q. Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination. Chem. Eng. J. 2021, 404, 127115.
CAS
Google Scholar
Zhao, Y. X.; Zheng, L. R.; Shi, R.; Zhang, S.; Bian, X. G.; Wu, F.; Cao, X. Z.; Waterhouse, G. I. N.; Zhang, T. R. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 2020, 10, 2002199.
CAS
Google Scholar
Zhao, Z. Q.; Hong, S.; Yan, C.; Choi, C.; Jung, Y.; Liu, Y.; Liu, S. Z.; Li, X.; Qiu, J. S.; Sun, Z. Y. Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites. Chem. Commun. 2019, 55, 7171–7174.
CAS
Google Scholar
Zhao, Z. Q.; Choi, C.; Hong, S.; Shen, H. D.; Yan, C.; Masa, J.; Jung, Y.; Qiu, J. S.; Sun, Z. Y. Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation. Nano Energy 2020, 78, 105368.
CAS
Google Scholar
Yuan, J. L.; Yi, X. Y.; Tang, Y. H.; Liu, M. J.; Liu, C. B. Efficient photocatalytic nitrogen fixation: Enhanced polarization, activation, and cleavage by asymmetrical electron donation to N≡N bond. Adv. Funct. Mater. 2020, 30, 1906983.
CAS
Google Scholar
Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.
Google Scholar
Sun, B. T.; Liang, Z. Q.; Qian, Y. Y.; Xu, X. S.; Han, Y.; Tian, J. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl. Mater. Interfaces 2020, 12, 7257–7269.
CAS
Google Scholar
Li, X. Z.; He, C. L.; Zuo, S. X.; Yan, X. Y.; Dai, D.; Zhang, Y. Y.; Yao, C. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy. Sol. Energy 2019, 191, 251–262.
CAS
Google Scholar
Xue, X. L.; Chen, R. P.; Chen, H. W.; Hu, Y.; Ding, Q. Q.; Liu, Z. T.; Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Yu, Q. et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 2018, 18, 7372–7377.
CAS
Google Scholar
Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.
Google Scholar
Luo, J. Y.; Bai, X. X.; Li, Q.; Yu, X.; Li, C. Y.; Wang, Z. N.; Wu, W. W.; Liang, Y. P.; Zhao, Z. H.; Liu, H. Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance. Nano Energy 2019, 66, 104187.
CAS
Google Scholar
Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.
CAS
Google Scholar
Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.
Google Scholar
Zhang, S.; Zhao, Y. X.; Shi, R.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Adv. Energy Mater. 2020, 10, 1901973.
CAS
Google Scholar
Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.
CAS
Google Scholar
Hou, T. T.; Xiao, Y.; Cui, P. X.; Huang, Y. N.; Tan, X. P.; Zheng, X. S.; Zou, Y.; Liu, C. X.; Zhu, W. K.; Liang, S. Q. et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv. Energy Mater. 2019, 9, 1902319.
CAS
Google Scholar
Wang, S. Y.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y. G.; Meng, X. G.; Yang, Z. X.; Chen, H.; Ye, J. H. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774.
Google Scholar
Li, P. S.; Zhou, Z. A.; Wang, Q.; Guo, M.; Chen, S. W.; Low, J.; Long, R.; Liu, W.; Ding, P. R.; Wu, Y. Y. et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 2020, 142, 12430–12439.
CAS
Google Scholar
Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.
CAS
Google Scholar
Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.
CAS
Google Scholar
Zhang, H.; Dasbiswas, K.; Ludwig, N. B.; Han, G.; Lee, B.; Vaikuntanathan, S.; Talapin, D. V. Stable colloids in molten inorganic salts. Nature 2017, 542, 328–331.
CAS
Google Scholar
Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.
CAS
Google Scholar
Li, Z.; Gao, Z. Y.; Li, B. W.; Zhang, L. L.; Fu, R.; Li, Y.; Mu, X. Y.; Li, L. Fe-Pt nanoclusters modified mott-schottky photocatalysts for enhanced ammonia synthesis at ambient conditions. Appl. Catal. B: Environ. 2020, 262, 118276.
CAS
Google Scholar
Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Liu, C.; Hsu, P. C.; Liu, W.; Chen, W.; Cui, Y. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy Environ. Sci. 2015, 8, 1719–1724.
CAS
Google Scholar
Qi, R. J.; Yu, P. F.; Zhang, J. C.; Guo, W. Q.; He, Y. Y.; Hojo, H.; Einaga, H.; Zhang, Q.; Liu, X. S.; Jiang, Z. et al. Efficient visible light photocatalysis enabled by the interaction between dual cooperative defect sites. Appl. Catal. B: Environ. 2020, 274, 119099.
CAS
Google Scholar
Yu, Z. L.; Gao, L. Z.; Yuan, S. Y.; Wu, Y. Solid defect structure and catalytic activity of perovskite-type catalysts La1−xSrxNiO3−x and La1−1.333xThxNiO3−λ. J. Chem. Soc., Faraday Trans. 1992, 88, 3245–3249.
CAS
Google Scholar
Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Topological defect dynamics in operando battery nanoparticles. Science 2015, 348, 1344–1347.
CAS
Google Scholar
Zhang, G. Q.; Yang, X.; He, C. X.; Zhang, P. X.; Mi, H. W. Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J. Mater. Chem. A 2020, 8, 334–341.
CAS
Google Scholar
Xie, C.; Yan, D. F.; Li, H.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization. ACS Catal. 2020, 10, 11082–11098.
CAS
Google Scholar
Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.
CAS
Google Scholar
Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.
CAS
Google Scholar
Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.
CAS
Google Scholar
Samadi, M.; Shivaee, H. A.; Pourjavadi, A.; Moshfegh, A. Z. Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: Charge carrier scavengers mechanism. Appl. Catal. A: Gen. 2013, 466, 153–160.
CAS
Google Scholar
Jing, K. Q.; Ma, W.; Ren, Y. H.; Xiong, J. H.; Guo, B. B.; Song, Y. J.; Liang, S. J.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B: Environ. 2019, 243, 10–18.
CAS
Google Scholar
Zhang, X. H.; Pei, C. L.; Chang, X.; Chen, S.; Liu, R.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J. Am. Chem. Soc. 2020, 142, 11540–11549.
CAS
Google Scholar
Chen, X. Q.; Liu, H. B.; Gu, G. B. Preparation of nanometer crystalline TiO2 with high photo-catalytic activity by pyrolysis of titanyl organic compounds and photo-catalytic mechanism. Mater. Chem. Phys. 2005, 91, 317–324.
CAS
Google Scholar
Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.
CAS
Google Scholar
Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.
CAS
Google Scholar
Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670–8677.
CAS
Google Scholar
Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 2005, 15, 1945–1954.
CAS
Google Scholar
Rajh, T.; Poluektov, O. G.; Thurnauer, M. C. Charge separation in titanium oxide nanocrystalline semiconductors revealed by magnetic resonance. In Chemical Physics of Nanostructured Semiconductors. Kokorin, A. I.; Bahnemann, D. W., Eds.; VSP-Brill Academic Publishers: Utrecht, Boston, 2003; pp 1–34.
Google Scholar
Yu, B. L.; Zhu, C. S.; Gan, F. X.; Huang, Y. B. Electron spin resonance properties of zno microcrystallites. Mater. Lett. 1998, 33, 247–250.
CAS
Google Scholar
Howe, R. F.; Gratzel, M. EPR observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem. 1985, 89, 4495–4499.
CAS
Google Scholar
Howe, R. F.; Gratzel, M. EPR study of hydrated anatase under UV irradiation. J. Phys. Chem. 1987, 91, 3906–3909.
CAS
Google Scholar
Carter, E.; Carley, A. F.; Murphy, D. M. Evidence for O2− radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J. Phys. Chem. C 2007, 111, 10630–10638.
CAS
Google Scholar
Liu, Y.; Hu, Z. F.; Yu, J. C. Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets. Chem. Mater. 2020, 32, 1488–1494.
CAS
Google Scholar
Huang, H.; Wang, X. S.; Philo, D.; Ichihara, F.; Song, H.; Li, Y. X.; Li, D.; Qiu, T.; Wang, S. Y.; Ye, J. H. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Appl. Catal. B: Environ. 2020, 267, 118686.
CAS
Google Scholar
Jiang, J.; Pachter, R.; Mehmood, F.; Islam, A. E.; Maruyama, B.; Boeckl, J. J. A Raman spectroscopy signature for characterizing defective single-layer graphene: Defect-induced I(D)/I(D′) intensity ratio by theoretical analysis. Carbon 2015, 90, 53–62.
CAS
Google Scholar
Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.
Google Scholar
Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Li, Y. L. Graphdiyne@ janus magnetite for photocatalytic nitrogen fixation. Angew. Chem., Int. Ed. 2021, 60, 3170–3174.
CAS
Google Scholar
Wu, Q. P.; van de Krol, R. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: Role of oxygen vacancies and iron dopant. J. Am. Chem. Soc. 2012, 134, 9369–9375.
CAS
Google Scholar
Aspnes, D. E. Spectroscopic ellipsometry-past, present, and future. Thin Solid Films 2014, 571, 334–344.
CAS
Google Scholar
Egbo, K. O.; Liu, C. P.; Ekuma, C. E.; Yu, K. M. Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first-principles calculations. J. Appl. Phys. 2020, 128, 135705.
CAS
Google Scholar
Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282.
CAS
Google Scholar
Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.
CAS
Google Scholar
Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.
CAS
Google Scholar
Jiao, S. L.; Fu, X. W.; Zhang, L.; Zeng, Y. J.; Huang, H. W. Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today 2020, 31, 100833.
CAS
Google Scholar
Guan, R. Q.; Wang, D. D.; Zhang, Y. J.; Liu, C.; Xu, W.; Wang, J. O.; Zhao, Z.; Feng, M.; Shang, Q. K.; Sun, Z. C. Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl. Catal. B: Environ. 2021, 282, 119580.
CAS
Google Scholar
Wang, W. K.; Zhang, H. M.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Sun, C. H.; Zhao, H. J. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 16644–16650.
CAS
Google Scholar
Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 2018, 140, 1760–1766.
CAS
Google Scholar
Lyu, M.; Liu, Y. W.; Zhi, Y. D.; Xiao, C.; Gu, B. C.; Hua, X. M.; Fan, S. J.; Lin, Y.; Bai, W.; Tong, W. et al. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition. J. Am. Chem. Soc. 2015, 137, 15043–15048.
CAS
Google Scholar
Jiang, X. D.; Zhang, Y. P.; Jiang, J.; Rong, Y. S.; Wang, Y. C.; Wu, Y. C.; Pan, C. X. Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 2012, 116, 22619–22624.
CAS
Google Scholar
Siegel, R. W. Positron annihilation spectroscopy. Annu. Rev. Mater. Sci. 1980, 10, 393–425.
CAS
Google Scholar
Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.
CAS
Google Scholar
Huang, T. X.; Cong, X.; Wu, S. S.; Lin, K. Q.; Yao, X.; He, Y. H.; Wu, J. B.; Bao, Y. F.; Huang, S. C.; Wang, X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.
CAS
Google Scholar
Pfisterer, J. H. K.; Baghernejad, M.; Giuzio, G.; Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 2019, 10, 5702.
CAS
Google Scholar
Li, S.; Yao, Z. P.; Zheng, J. M.; Fu, M. S.; Cen, J. J.; Hwang, S.; Jin, H. L.; Orlov, A.; Gu, L.; Wang, S. et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew. Chem., Int. Ed. 2020, 59, 22092–22099.
CAS
Google Scholar
Kondo, S.; Mitsuma, T.; Shibata, N.; Ikuhara, Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2016, 2, e1501926.
Google Scholar
Ding, Y.; Choi, Y.; Chen, Y.; Pradel, K. C.; Liu, M. L.; Wang, Z. L. Quantitative nanoscale tracking of oxygen vacancy diffusion inside single ceria grains by in situ transmission electron microscopy. Mater. Today 2020, 38, 24–34.
CAS
Google Scholar
Kwon, O.; Kim, Y. I.; Kim, K.; Kim, J. C.; Lee, J. H.; Park, S. S.; Han, J. W.; Kim, Y. M.; Kim, G.; Jeong, H. Y. Probing one-dimensional oxygen vacancy channels driven by cation-anion double ordering in perovskites. Nano Lett. 2020, 20, 8353–8359.
CAS
Google Scholar
Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.
CAS
Google Scholar
Sartoretti, E.; Novara, C.; Fontana, M.; Giorgis, F.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. New insights on the defect sites evolution during Co oxidation over doped ceria nanocatalysts probed by in situ Raman spectroscopy. Appl. Catal. A: Gen. 2020, 596, 117517.
CAS
Google Scholar
Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.
CAS
Google Scholar
Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.
CAS
Google Scholar
Yang, Y. Q.; Yin, L. C.; Gong, Y.; Niu, P.; Wang, J. Q.; Gu, L.; Chen, X. Q.; Liu, G.; Wang, L. Z.; Cheng, H. M. An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv. Mater. 2018, 30, 1704479.
Google Scholar
Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.
CAS
Google Scholar
Mohebinia, M.; Wu, C.; Yang, G.; Dai, S.; Hakimian, A.; Tong, T.; Ghasemi, H.; Wang, Z.; Wang, D.; Ren, Z. et al. Ultrathin bismuth oxyiodide nanosheets for photocatalytic ammonia generation from nitrogen and water under visible to near-infrared light. Mater. Today Phys. 2021, 16, 100293.
CAS
Google Scholar
Liang, C.; Niu, H. Y.; Guo, H.; Niu, C. G.; Yang, Y. Y.; Liu, H. Y.; Tang, W. W.; Feng, H. P. Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem. Eng. J. 2021, 406, 126868.
CAS
Google Scholar
Fu, F.; Shen, H. D.; Sun, X.; Xue, W. W.; Shoneye, A.; Ma, J. N.; Luo, L.; Wang, D. J.; Wang, J. G.; Tang, J. W. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO6 for efficient photocatalysis. Appl. Catal. B: Environ. 2019, 247, 150–162.
CAS
Google Scholar
Li, Y. S.; Tang, Z. L.; Zhang, J. Y.; Zhang, Z. T. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance. J. Phys. Chem. C 2016, 120, 9750–9763.
CAS
Google Scholar
Xu, C. M.; Qiu, P. X.; Li, L. Y.; Chen, H.; Jiang, F.; Wang, X. Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2018, 10, 25321–25328.
CAS
Google Scholar
Li, Q.; Bai, X. X.; Luo, J. Y.; Li, C. Y.; Wang, Z. N.; Wu, W. W.; Liang, Y. P.; Zhao, Z. H. Fe doped SrWO4 with tunable band structure for photocatalytic nitrogen fixation. Nanotechnology 2020, 31, 375402.
CAS
Google Scholar
Xue, Y. J.; Guo, Y. C.; Liang, Z. Q.; Cui, H. Z.; Tian, J. Porous g-C3N4 with nitrogen defects and cyano groups for excellent photocatalytic nitrogen fixation without co-catalysts. J. Colloid Interface Sci. 2019, 556, 206–213.
CAS
Google Scholar
Wu, D. P.; Wang, R.; Yang, C.; An, Y. P.; Lu, H.; Wang, H. J.; Cao, K.; Gao, Z. Y.; Zhang, W. C.; Xu, F. et al. Br doped porous bismuth oxychloride micro-sheets with rich oxygen vacancies and dominating {001} facets for enhanced nitrogen photo-fixation performances. J. Colloid Interface Sci. 2019, 556, 111–119.
CAS
Google Scholar
Shi, L.; Li, Z.; Ju, L. C.; Carrasco-Pena, A.; Orlovskaya, N.; Zhou, H. Q.; Yang, Y. Promoting nitrogen photofixation over a periodic WS2@TiO2 nanoporous film. J. Mater. Chem. A 2020, 8, 1059–1065.
CAS
Google Scholar
Bu, T. A.; Hao, Y. C.; Gao, W. Y.; Su, X.; Chen, L. W.; Zhang, N.; Yin, A. X. Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals. Nanoscale 2019, 11, 10072–10079.
CAS
Google Scholar
Zhao, Y. Y.; Zhou, S.; Zhao, J. J.; Du, Y.; Dou, S. X. Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 9304–9312.
CAS
Google Scholar
Xue, J. W.; Fujitsuka, M.; Majima, T. Defect-mediated electron transfer in photocatalysts. Chem. Commun. 2021, 57, 3532–3542.
CAS
Google Scholar
Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.
CAS
Google Scholar
Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.
CAS
Google Scholar
Niu, X. Y.; Zhu, Q.; Jiang, S. L.; Zhang, Q. Photoexcited electron dynamics of nitrogen fixation catalyzed by ruthenium single-atom catalysts. J. Phys. Chem. Lett. 2020, 11, 9579–9586.
CAS
Google Scholar
Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.
CAS
Google Scholar
Dong, G. H.; Ho, W.; Wang, C. Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435–23441.
CAS
Google Scholar
Li, H.; Shang, J.; Shi, J. G.; Zhao, K.; Zhang, L. Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986–1993.
CAS
Google Scholar
Mao, C. L.; Li, H.; Gu, H. G.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Xu, J.; Deng, F.; Shen, W. J.; Li, J. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 2019, 5, 2702–2717.
CAS
Google Scholar
Xue, X. L.; Chen, R. P.; Yan, C. Z.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Ma, L. B.; Zhu, G. Y.; Jin, Z. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 2019, 11, 10439–10445.
CAS
Google Scholar
Wang, T. Y.; Feng, C. T.; Liu, J. Q.; Wang, D. J.; Hu, H. M.; Hu, J.; Chen, Z.; Xue, G. L. Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chem. Eng. J. 2021, 414, 128827.
CAS
Google Scholar
Wu, H. Y.; Li, X.; Cheng, Y.; Xiao, Y. H.; Li, R. F.; Wu, Q. P.; Lin, H.; Xu, J.; Wang, G. Q.; Lin, C. et al. Plasmon-driven N2 photofixation in pure water over MoO3−x nanosheets under visible to NIR excitation. J. Mater. Chem. A 2020, 8, 2827–2835.
CAS
Google Scholar
Li, Y. H.; Chen, X.; Zhang, M. J.; Zhu, Y. M.; Ren, W. J.; Mei, Z. W.; Gu, M.; Pan, F. Oxygen vacancy-rich MoO3−x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 2019, 9, 803–810.
CAS
Google Scholar
Fan, J. Y.; Zuo, M. M.; Ding, Z. X.; Zhao, Z. W.; Liu, J.; Sun, B. A readily synthesis of oxygen vacancy-induced In(OH)3/carbon nitride 0D/2D heterojunction for enhanced visible-light-driven nitrogen fixation. Chem. Eng. J. 2020, 396, 125263.
CAS
Google Scholar
Liu, Q.; Yuan, J. L.; Gan, Z. W.; Liu, C.; Li, J.; Liang, Y.; Chen, R. Photocatalytic N2 reduction: Uncertainties in the determination of ammonia production. ACS Sustain. Chem. Eng. 2021, 9, 560–568.
CAS
Google Scholar
Ran, Y.; Yu, X. L.; Liu, J. Q.; Cui, J. Y.; Wang, J. P.; Wang, L.; Zhang, Y. H.; Xiang, X.; Ye, J. Polymeric carbon nitride with frustrated lewis pair sites for enhanced photofixation of nitrogen. J. Mater. Chem. A 2020, 8, 13292–13298.
CAS
Google Scholar
Liu, S. Z.; Wang, Y. J.; Wang, S. B.; You, M. M.; Hong, S.; Wu, T. S.; Soo, Y. L.; Zhao, Z. Q.; Jiang, G. Y.; Qiu, J. S. et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustain. Chem. Eng. 2019, 7, 6813–6820.
CAS
Google Scholar
Hou, T. T.; Li, Q.; Zhang, Y. D.; Zhu, W. K.; Yu, K. F.; Wang, S. M.; Xu, Q.; Liang, S. Q.; Wang, L. B. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl. Catal. B: Environ. 2020, 273, 119072.
CAS
Google Scholar
Xue, Y. J.; Kong, X. K.; Guo, Y. C.; Liang, Z. Q.; Cui, H. Z.; Tian, J. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation. J. Materiomics 2020, 6, 128–137.
Google Scholar
Wu, G.; Yu, L. H.; Liu, Y. F.; Zhao, J. M.; Han, Z.; Geng, G. One step synthesis of N vacancy-doped g-C3N4/Ag2CO3 heterojunction catalyst with outstanding “two-path” photocatalytic N2 fixation ability via in-situ self-sacrificial method. Appl. Surf. Sci. 2019, 481, 649–660.
CAS
Google Scholar
Ding, Z.; Wang, S.; Chang, X.; Wang, D. H.; Zhang, T. H. Nano-MOF@defected film C3N4 Z-scheme composite for visible-light photocatalytic nitrogen fixation. RSC Adv. 2020, 10, 26246–26255.
CAS
Google Scholar
Zhou, N.; Qiu, P. X.; Chen, H.; Jiang, F. KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects. J. Taiwan Inst. Chem. Eng. 2018, 83, 99–106.
CAS
Google Scholar
Hu, X. L.; Zhang, W. J.; Yong, Y. W.; Xu, Y.; Wang, X. H.; Yao, X. X. One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance. Appl. Surf. Sci. 2020, 510, 145413.
CAS
Google Scholar
Cao, S. H.; Fan, B.; Feng, Y. C.; Chen, H.; Jiang, F.; Wang, X. Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem. Eng. J. 2018, 353, 147–156.
CAS
Google Scholar
He, Z. Y.; Wang, Y.; Dong, X. L.; Zheng, N.; Ma, H. C.; Zhang, X. F. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation. RSC Adv. 2019, 9, 21646–21652.
CAS
Google Scholar
Cao, Y. H.; Hu, S. Z.; Li, F. Y.; Fan, Z. P.; Bai, J.; Lu, G.; Wang, Q. Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Adv. 2016, 6, 49862–49867.
CAS
Google Scholar
Hu, S. Z.; Chen, X.; Li, Q.; Zhao, Y. F.; Mao, W. Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 2016, 6, 5884–5890.
CAS
Google Scholar
Zhang, Q.; Hu, S. Z.; Fan, Z. P.; Liu, D. S.; Zhao, Y. F.; Ma, H. F.; Li, F. Y. Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans. 2016, 45, 3497–3505.
CAS
Google Scholar
Li, H. T.; Liu, Y. D.; Liu, Y. L.; Wang, L. Z.; Tang, R.; Deng, P. J.; Xu, Z. Q.; Haynes, B.; Sun, C. H.; Huang, J. Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B: Environ. 2021, 281, 119476.
CAS
Google Scholar
Ye, X. H.; Yan, X. Y.; Chu, X. N.; Zuo, S. X.; Liu, W. J.; Li, X. Z.; Yao, C. Construction of upconversion fluoride/attapulgite nano-composite for visible-light-driven photocatalytic nitrogen fixation. Front. Mater. Sci. 2020, 14, 469–480.
Google Scholar
Jia, H. L.; Du, A. X.; Zhang, H.; Yang, J. H.; Jiang, R. B.; Wang, J. F.; Zhang, C. Y. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J. Am. Chem. Soc. 2019, 141, 5083–5086.
CAS
Google Scholar
Sun, C.; Chen, Z. Q.; Cui, J.; Li, K.; Qu, H. X.; Xie, H. F.; Zhong, Q. Site-exposed Ti3C2 mxene anchored in N-defect g-C3N4 heterostructure nanosheets for efficient photocatalytic N2 fixation. Catal. Sci. Technol. 2021, 11, 1027–1038.
CAS
Google Scholar
Kong, Y.; Lv, C. D.; Zhang, C. M.; Chen, G. Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Appl. Surf. Sci. 2020, 515, 146009.
CAS
Google Scholar
Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.
CAS
Google Scholar
Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Hosono, H. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 2020, 142, 14374–14383.
CAS
Google Scholar
Hu, S. Z.; Li, Y. M.; Li, F. Y.; Fan, Z. P.; Ma, H. F.; Li, W.; Kang, X. X. Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies. ACS Sustain. Chem. Eng. 2016, 4, 2269–2278.
CAS
Google Scholar
Wang, W.; Huang, Y.; Wang, Z. Y. Defect engineering in two-dimensional graphitic carbon nitride and application to photocatalytic air purification. Acta Phys. -Chim. Sin. 2021, 37, 2011073.
Google Scholar
Zhang, Y.; Di, J.; Ding, P. H.; Zhao, J. Z.; Gu, K. Z.; Chen, X. L.; Yan, C.; Yin, S.; Xia, J. X.; Li, H. M. Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2019, 553, 530–539.
CAS
Google Scholar
He, C. L.; Li, X. Z.; Chen, X. F.; Ma, S. J.; Yan, X. Y.; Zhang, Y. Y.; Zuo, S. X.; Yao, C. Palygorskite supported rare earth fluoride for photocatalytic nitrogen fixation under full spectrum. Appl. Clay Sci. 2020, 184, 105398.
CAS
Google Scholar
Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.
CAS
Google Scholar
Meng, S. G.; Chen, C.; Gu, X. M.; Wu, H. H.; Meng, Q. Q.; Zhang, J. F.; Chen, S. F.; Fu, X. L.; Liu, D.; Lei, W. W. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B: Environ. 2021, 285, 119789.
CAS
Google Scholar
Sun, S.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard III, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209.
CAS
Google Scholar
Huang, B. M.; Liu, Y.; Pang, Q.; Zhang, X. Y.; Wang, H. T.; Shen, P. K. Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering. J. Mater. Chem. A 2020, 8, 22251–22256.
CAS
Google Scholar
Cheng, Y. W.; Song, Y.; Zhang, Y. M. The doping and oxidation of 2D black and blue phosphorene: A new photocatalyst for nitrogen reduction driven by visible light. Phys. Chem. Chem. Phys. 2019, 21, 24449–24457.
CAS
Google Scholar
Wang, K. Y.; Gu, G. Z.; Hu, S. Z.; Zhang, J.; Sun, X. L.; Wang, F.; Li, P.; Zhao, Y. F.; Fan, Z. P.; Zou, X. Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: Experiment and DFT simulation analysis. Chem. Eng. J. 2019, 368, 896–904.
CAS
Google Scholar
Hu, Y. Z.; Zhao, G. X.; Pan, Q. S.; Wang, H. H.; Shen, Z. W.; Peng, B. X.; Busser, G. W.; Wang, X. K.; Muhler, M. Highly selective anaerobic oxidation of alcohols over Fe-doped SrTiO3 under visible light. ChemCatChem 2019, 11, 5139–5144.
CAS
Google Scholar
Li, B. F.; Hong, J. H.; Ai, Y. J.; Hu, Y. Z.; Shen, Z. W.; Li, S. J.; Zou, Y. T.; Zhang, S.; Wang, X. K.; Zhao, G. X. et al. Visible-near-infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. J. Catal. 2021, 399, 142–149.
CAS
Google Scholar
MacKay, B. A.; Fryzuk, M. D. Dinitrogen coordination chemistry: On the biomimetic borderlands. Chem. Rev. 2004, 104, 385–402.
CAS
Google Scholar
Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.
Google Scholar
Li, J. X.; Wang, D. D.; Guan, R. Q.; Zhang, Y. J.; Zhao, Z.; Zhai, H. J.; Sun, Z. C. Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain. Chem. Eng. 2020, 8, 18258–18265.
CAS
Google Scholar
Shen, Z. F.; Li, F. F.; Lu, J. R.; Wang, Z. D.; Li, R.; Zhang, X. C.; Zhang, C. M.; Wang, Y. W.; Wang, Y. F.; Lv, Z. P. et al. Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(III) doped as an activation center. J. Colloid Interface Sci. 2021, 584, 174–181.
CAS
Google Scholar
Mao, Y. H.; Yang, X. W.; Gong, W. B.; Zhang, J.; Pan, T.; Sun, H. Z.; Chen, Z. G.; Wang, Z.; Zhu, J. F.; Hu, J. et al. A dopant replacement-driven molten salt method toward the synthesis of sub-5-nm-sized ultrathin nanowires. Small 2020, 16, 2001098.
CAS
Google Scholar
Li, H. D.; Gu, S. N.; Sun, Z. J.; Guo, F.; Xie, Y. M.; Tao, B. R.; He, X.; Zhang, W. F.; Chang, H. X. The in-built bionic “MoFe cofactor” in Fe-doped two-dimensional MoTe2 nanosheets for boosting the photocatalytic nitrogen reduction performance. J. Mater. Chem. A 2020, 8, 13038–13048.
CAS
Google Scholar
Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible light-driven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453–37460.
CAS
Google Scholar
Ying, Z. H.; Chen, S. T.; Zhang, S.; Peng, T. Y.; Li, R. J. Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Appl. Catal. B: Environ. 2019, 254, 351–359.
CAS
Google Scholar
Meng, Q. Q.; Lv, C. D.; Sun, J. X.; Hong, W. Z.; Xing, W. N.; Qiang, L. S.; Chen, G.; Jin, X. L. High-efficiency Fe-mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal. B: Environ. 2019, 256, 117781.
Google Scholar
Zeng, L.; Zhe, F.; Wang, Y.; Zhang, Q. L.; Zhao, X. Y.; Hu, X.; Wu, Y.; He, Y. M. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. J. Colloid Interface Sci. 2019, 539, 563–574.
CAS
Google Scholar
Feng, X. W.; Chen, H.; Jiang, F.; Wang, X. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation. J. Colloid Interface Sci. 2018, 509, 298–306.
CAS
Google Scholar
Han, Q.; Wu, C. B.; Jiao, H. M.; Xu, R. Y.; Wang, Y. Z.; Xie, J. J.; Guo, Q.; Tang, J. W. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Adv. Mater. 2021, 33, 2008180.
CAS
Google Scholar
Xue, X. L.; Chen, H. W.; Xiong, Y.; Chen, R. P.; Jiang, M. H.; Fu, G.; Xi, Z. H.; Zhang, X. L.; Ma, J.; Fang, W. H. et al. Near-infrared-responsive photo-driven nitrogen fixation enabled by oxygen vacancies and sulfur doping in black TiO2−xSy nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 4975–4983.
CAS
Google Scholar
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.
CAS
Google Scholar
Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.
CAS
Google Scholar
Li, J.; Liu, P.; Tang, Y. Z.; Huang, H. L.; Cui, H. Z.; Mei, D. H.; Zhong, C. L. Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020, 10, 2431–2442.
CAS
Google Scholar
Hou, T. T.; Peng, H. L.; Xin, Y.; Wang, S. M.; Zhu, W. K.; Chen, L. L.; Yao, Y.; Zhang, W. H.; Liang, S. Q.; Wang, L. B. Fe single-atom catalyst for visible-light-driven photofixation of nitrogen sensitized by triphenylphosphine and sodium iodide. ACS Catal. 2020, 10, 5502–5510.
CAS
Google Scholar
Lv, X. S.; Wei, W.; Li, F. P.; Huang, B. B.; Dai, Y. Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett. 2019, 19, 6391–6399.
CAS
Google Scholar
Liu, J. D.; Wei, Z. X.; Dou, Y. H.; Feng, Y. Z.; Ma, J. M. Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Met. 2020, 39, 874–880.
CAS
Google Scholar
Huang, P. C.; Liu, W.; He, Z. H.; Xiao, C.; Yao, T.; Zou, Y. M.; Wang, C. M.; Qi, Z. M.; Tong, W.; Pan, B. C. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187–1196.
CAS
Google Scholar
Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.
CAS
Google Scholar
Zhang, C. M.; Xu, Y. L.; Lv, C. D.; Bai, L. C.; Liao, J.; Zhai, Y. C.; Zhang, H. W.; Chen, G. Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation. Appl. Catal. B: Environ. 2020, 264, 118416.
CAS
Google Scholar
Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.
Google Scholar
Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.
CAS
Google Scholar
Wang, T. Y.; Liu, J. Q.; Wu, P. F.; Feng, C. T.; Wang, D. J.; Hu, H. M.; Xue, G. L. Direct utilization of air and water as feedstocks in the photo-driven nitrogen reduction reaction over a ternary Z-scheme SiW9CO3/PDA/BWO hetero-junction. J. Mater. Chem. A 2020, 8, 16590–16598.
CAS
Google Scholar
Li, X. B.; Wang, W. W.; Dong, F.; Zhang, Z. Q.; Han, L.; Luo, X. D.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Jia, G. H. et al. Recent advances in noncontact external-field-assisted photocatalysis: From fundamentals to applications. ACS Catal. 2021, 11, 4739–4769.
CAS
Google Scholar
Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field-stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem., Int. Ed. 2021, 60, 11910–11918.
CAS
Google Scholar
Zhang, K.; Guo, L. J. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672–1690.
CAS
Google Scholar
Zhang, S. Q.; Si, Y. M.; Li, B.; Yang, L. X.; Dai, W. L.; Luo, S. L. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: A critical review. Small 2021, 17, 2004980.
CAS
Google Scholar
Nakayama, M.; Martin, M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys. Chem. Chem. Phys. 2009, 11, 3241–3249.
CAS
Google Scholar
Yang, X. Y.; Fernández-Carrión, A. J.; Wang, J. H.; Porcher, F.; Fayon, F.; Allix, M.; Kuang, X. J. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion scheelite structure. Nat. Commun. 2018, 9, 4484.
Google Scholar
Wu, Q. P.; Zheng, Q.; van de Krol, R. Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles. J. Phys. Chem. C 2012, 116, 7219–7226.
CAS
Google Scholar
Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.
CAS
Google Scholar
Zhang, Y. Q.; Guo, L.; Tao, L.; Lu, Y. B.; Wang, S. Y. Defect-based single-atom electrocatalysts. Small Methods 2019, 3, 1800406.
Google Scholar
Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.
CAS
Google Scholar
Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.
CAS
Google Scholar