Skip to main content
Log in

Surface control of layered double hydroxides by in-situ initiating & terminating polymerization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Appropriate surface modification or functionalization is prerequisite for the application of inorganic nanoparticles. And surface control between organic and inorganic interface plays an important role in constructing organic-inorganic composites. In-situ polymerization has been extensively studied to improve the compatibility and dispersibility of inorganic nanoparticles, but the polymerized nanoparticles tend to concatenate and form large composites, restricting further applications. Herein, uniform and dense polyacrylic acid (PAA) membranes have been grafted on layered double hydroxide (LDH) nanosheets via an in-situ initiating and terminating radical graft polymerization method. With initiating and terminating on the same particle, the size, morphology and density of grafted PAA onto the surface of LDHs can be controlled by adjusting the ratio of initiated sites to terminated sites, the amount of redox initiator or monomer. As a result, with only 17.33% organic grafting ratio, PAA@LDHs with largely improved compatibility can be monodispersed in polyethylene (PE) and polyvinyl chloride (PVC) matrices, which is determined by a fluorescence microscope technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646.

    Article  CAS  Google Scholar 

  2. Nam, J.; Won, N.; Bang, J.; Jin H.; Park J.; Jung S.; Jung S.; Park Y.; Kim S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliver. Rev. 2013, 65, 622–648.

    Article  CAS  Google Scholar 

  3. Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

    Article  CAS  Google Scholar 

  4. Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability. Adv. Mater. Interfaces 2018, 5, 1701662.

    Article  Google Scholar 

  5. Ajayan, P. M.; Schadler, L. S.; Braun, P. V. Nanocomposite Science and Technology; Wiley VCH Verlag: Weinheim, 2003.

    Book  Google Scholar 

  6. Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, 6, 278–282.

    Article  CAS  Google Scholar 

  7. Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y. F.; Mishra, R. K.; Marchon, D.; Flatt, R. J.; Estrela-Lopis, I.; Llop, J.; Moya, S. et al. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep. 2017, 72, 1–58.

    Article  CAS  Google Scholar 

  8. Estroff, L. A.; Hamilton, A. D. At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem. Mater. 2001, 13, 3227–3235.

    Article  CAS  Google Scholar 

  9. Shen, J. N.; Ruan, H. M.; Wu, L. G.; Gao, C. J. Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 2011, 168, 1272–1278.

    Article  CAS  Google Scholar 

  10. Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261.

    Article  CAS  Google Scholar 

  11. Chandran, S.; Begam, N.; Padmanabhan, V.; Basu, J. K. Confinement enhances dispersion in nanoparticle-polymer blend films. Nat. Commun. 2014, 5, 3697.

    Article  Google Scholar 

  12. Suter, J. L.; Groen, D.; Coveney, P. V. Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Adv. Mater. 2015, 27, 966–984.

    Article  CAS  Google Scholar 

  13. Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012, 112, 3777–3807.

    Article  Google Scholar 

  14. Das, S.; Wajid, A. S.; Shelburne, J. L.; Liao, Y. C.; Green, M. J. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Appl. Mater. Interfaces 2011, 3, 1844–1851.

    Article  CAS  Google Scholar 

  15. Mylvaganam, K.; Zhang, L. C. In situ polymerization on graphene surfaces. J. Phys. Chem. C 2013, 117, 2817–2823.

    Article  CAS  Google Scholar 

  16. Wu, C.; Wang, X. D.; Zhang, J. Y.; Cheng, J.; Shi, L. Microencapsulation and surface functionalization of ammonium polyphosphate via in-situ polymerization and thiol-ene photograted reaction for application in flame-retardant natural rubber. Ind. Eng. Chem. Res. 2019, 58, 17346–17358.

    Article  CAS  Google Scholar 

  17. Lin, C.; Lü, T.; Qi, D. M.; Cao, Z. H.; Sun, Y. Y.; Wang, Y. T. Effects of surface groups on SiO2 nanoparticles on in situ solution polymerization: Kinetics and mechanism. Ind. Eng. Chem. Res. 2018, 57, 15280–15290.

    CAS  Google Scholar 

  18. Zhou, Y.; Wang, S. X.; Ding, B. J.; Yang, Z. M. Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem. Eng. J. 2008, 138, 578–585.

    Article  CAS  Google Scholar 

  19. Rong, M. Z.; Zhang, M. Q.; Wang, H. B.; Zeng, H. M. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization. Appl. Surf. Sci. 2002, 200, 76–93.

    Article  CAS  Google Scholar 

  20. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  CAS  Google Scholar 

  21. Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943.

    Article  Google Scholar 

  22. Kong, X. G.; Ge, R. X.; Liu, T.; Xu, S. M.; Hao, P. P.; Zhao, X. J.; Li, Z. H.; Lei, X. D.; Duan, H. H. Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chem. Eng. J. 2021, 407, 127178.

    Article  CAS  Google Scholar 

  23. Gao, R.; Yan, D. P. Layered host-guest long-afterglow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 2017, 8, 590–599.

    Article  CAS  Google Scholar 

  24. Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

    Article  CAS  Google Scholar 

  25. Gao, R.; Yan, D. P. Ordered assembly of hybrid room-temperature phosphorescence thin films showing polarized emission and the sensing of VOCs. Chem. Commun. 2017, 53, 5408–5411.

    Article  CAS  Google Scholar 

  26. Evans, D. G.; Duan, X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 2006, 485–496.

    Google Scholar 

  27. Gao, Y. S.; Wu, J. W.; Wang, Q.; Wilkie, C. A.; O’Hare, D. Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2014, 2, 10996–11016.

    Article  CAS  Google Scholar 

  28. Costa, F. R.; Saphiannikova, M.; Wagenknecht, U.; Heinrich, G. Layered double hydroxide based polymer nanocomposites. In Wax Crystal Control·Nanocomposites·Stimuli-Responsive Polymers. Springer-Verlag: Berlin, 2008; pp 101–168.

    Google Scholar 

  29. Kang, N. J.; Wang, D. Y.; Kutlu, B.; Zhao, P. C.; Leuteritz, A.; Wagenknecht, U.; Heinrich, G. A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: Preparation and characterization of dye structure-intercalated LDH and its effect on the flammability of polypropylene-grafted maleic anhydride/d-LDH composites. ACS Appl. Mater. Interfaces 2013, 5, 8991–8997.

    Article  CAS  Google Scholar 

  30. Nyambo, C.; Wang, D. Y.; Wilkie, C. A. Will layered double hydroxides give nanocomposites with polar or non-polar polymers? Polym. Adv. Technol. 2009, 20, 332–340.

    Article  CAS  Google Scholar 

  31. Zhao, Y.; Yang, W. D.; Xue, Y. H.; Wang, X. G.; Lin, T. Partial exfoliation of layered double hydroxides in DMSO: A route to transparent polymer nanocomposites. J. Mater. Chem. 2011, 21, 4869–4847.

    Article  CAS  Google Scholar 

  32. Gu, Z.; Atherton, J. J.; Xu, Z. P. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chem. Commun. 2015, 51, 3024–3036.

    Article  CAS  Google Scholar 

  33. Hu, Z. Q.; Chen, G. M. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv. Mater. 2014, 26, 5950–5956.

    Article  CAS  Google Scholar 

  34. Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606–3617.

    Article  CAS  Google Scholar 

  35. Wang, C. X.; Mao, H. Y.; Wang, C. X.; Fu, S. H. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res. 2011, 50, 11930–11934.

    Article  CAS  Google Scholar 

  36. Yue, X. J.; Zhang, T.; Yang, D. Y.; Qiu, F. X.; Li, Z. D.; Zhu, Y.; Yu, H. Q. Oil removal from oily water by a low-cost and durable flexible membrane made of layered double hydroxide nanosheet on cellulose support. J. Clean. Prod. 2018, 180, 307–315.

    Article  CAS  Google Scholar 

  37. Jiang, J.; Zhang, Y.; Zheng, Y.; Jiang, P. Transesterification of soybean oil with ethylene glycol, catalyzed by modified Li-Al layered double hydroxides. Chem. Eng. Technol. 2013, 36, 1371–1377.

    Article  CAS  Google Scholar 

  38. Wang, H. B.; Chen, E. Y.; Jia, X. B.; Liang, L. J.; Wang, Q. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces. Appl. Surf. Sci. 2015, 349, 724–732.

    Article  CAS  Google Scholar 

  39. Liu, R. R.; Zhang, P.; Dai, H. L. Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry. J. Polym. Res. 2016, 23, 218.

    Article  Google Scholar 

  40. Rong, M. Z.; Ji, Q. L.; Zhang, M. Q.; Friedrich, K. Graft polymerization of vinyl monomers onto nanosized alumina particles. Eur. Polym. J. 2002, 38, 1573–1582.

    Article  CAS  Google Scholar 

  41. Ribelli, T. G.; Augustine, K. F.; Fantin, M.; Krys, P.; Poli, R.; Matyjaszewski, K. Disproportionation or combination? the termination of acrylate radicals in ATRP. Macromolecules 2017, 50, 7920–7929.

    Article  CAS  Google Scholar 

  42. Nair, V.; Deepthi, A. Cerium(IV) ammonium nitrate-a versatile single-electron oxidant. Chem. Rev. 2007, 107, 1862–1891.

    Article  CAS  Google Scholar 

  43. Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat. Commun. 2016, 7, 11811.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21776018, 21627813, U170760003, 21521005, and 21905014), the Qinghai Provincial Major Science and Technology Special Project (No. 2020-GX-A1) and the Key R&D Program of Gansu Province (No. 19YF3GA003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wendi Liu or Yanjun Lin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Zhu, Y., Li, K. et al. Surface control of layered double hydroxides by in-situ initiating & terminating polymerization. Nano Res. 15, 1538–1546 (2022). https://doi.org/10.1007/s12274-021-3699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3699-y

Keywords

Navigation