Skip to main content
Log in

Nanoarchitectonics Based on Ultrasonication-Assisted Polymerization for Enhanced Interaction Between Liquid Monomer and LDH Nanosheets

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work reports on the novel ultrasonication-assisted in situ synthesis of ethylene-propylene-1-hexene (EPH)-ZnAl-layered double hydroxide (LDH) nanocomposites. The ultrasonication treatment exfoliated the LDH in a few layers or thinner nanosheets, which demonstrated a positive influence over the catalytic activity and formed different active sites. Moreover, the highly dispersed ZnAl sheet in the EPH polymer matrices greatly enhanced its thermomechanical properties, as demonstrated by thermogravimetric and dynamic mechanical analysis. Less than ~ 0.25 wt% of the filler content substantially improved the thermal stability by 34 ℃ and the average activation energy (Ea) of thermal degradation by 48 kJ/mol. The degradation mechanism of the polymer nanocomposites was investigated by a generalized kinetic master plot technique. The neat EP, EPH, and EPH-ZnAl followed the Avrami-Erofeev (A2) kinetic model; however, the ultrasonicated EPH-ZnAl followed the random scission (L2) degradation kinetics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Daud, F. Shehzad, M.A. Al-Harthi, Crystallization behaviour and lamellar thickness distribution of metallocene-catalyzed polymer: Effect of 1-alkene comonomer and branch length. Can. J. Chem. Eng. 95(3), 491–499 (2017). https://doi.org/10.1002/cjce.22711

    Article  CAS  Google Scholar 

  2. M. Zubair, F. Shehzad, M.A. Al-Harthi, Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate). Thermochim. Acta 633, 48–55 (2016). https://doi.org/10.1016/j.tca.2016.03.034

    Article  CAS  Google Scholar 

  3. M. Gao, Q. Jiao, W. Cui et al., Preparation of PET/LDH composite materials and their mechanical properties and permeability for O2. Polym. Eng. Sci. 59(s2), E366–E371 (2019). https://doi.org/10.1002/pen.25067

    Article  CAS  Google Scholar 

  4. C.M. Preston, G. Amarasinghe, J.L. Hopewell, R.A. Shanks, Z. Mathys, Evaluation of polar ethylene copolymers as fire retardant nanocomposite matrices. Polym. Degrad. Stab. 84(3), 533–544 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.02.004

    Article  CAS  Google Scholar 

  5. M. Usman, M. Ali, B.A. Al-Maythalony et al., Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels. ACS Appl. Mater. Interfaces 12(44), 49992–50001 (2020). https://doi.org/10.1021/acsami.0c13715

    Article  CAS  PubMed  Google Scholar 

  6. G.B. Galland, J.H.Z. dos Santos, M. Dall’Agnol, R. Bisatto, Study of ethylene-propylene-1-hexene co-and terpolymers obtained with homogeneous and supported metallocene catalysts. Macromol. Symp. (2006). https://doi.org/10.1002/masy.200651307

    Article  Google Scholar 

  7. N. Herfert, P. Montag, G. Fink, Elementary processes of the Ziegler catalysis, 7. ethylene, α-olefin and norbornene copolymerization with the stereorigid catalyst systems ipr[flucp]zrcl2/mao and me2si[ind]2zrcl2/mao. Die Makromol. Chemie. 194(11), 3167–3182 (1993). https://doi.org/10.1002/macp.1993.021941120

    Article  CAS  Google Scholar 

  8. J. Koivumaki, J.V. Seppala, Observations on the synergistic effect of adding 1-butene to systems polymerized with MgCl2/TiCl4 and Cp2ZrCl2 catalysts. Macromolecules 27(8), 2008–2012 (1994). https://doi.org/10.1021/ma00086a005

    Article  CAS  Google Scholar 

  9. G. Barrera Galland, F.F. Nunes Escher, L.F. da Silva, M.M. de Camargo Forte, R. Quijada, Ethylene–propylene-α-olefin terpolymers thermal and mechanical properties. J. Appl. Polym. Sci. 104(6), 3827–3836 (2007). https://doi.org/10.1002/app.25972

    Article  CAS  Google Scholar 

  10. J.V. Seppälä, Copolymers of ethylene with butene-1 and long chain α-olefins. I. Decene-1 as long chain α-olefin. J. Appl. Polym. Sci. 30(9), 3545–3556 (1985). https://doi.org/10.1002/app.1985.070300903

    Article  Google Scholar 

  11. H. Mazhar, F. Shehzad, S.-G. Hong, M.A. Al-harthi, Degradation kinetics and thermomechanical properties of in-situ polymerized layered double hydroxides-ethylene-propylene copolymer. J. Appl. Polym. Sci. 139(16), 52002 (2022). https://doi.org/10.1002/app.52002

    Article  CAS  Google Scholar 

  12. H. Mazhar, F. Shehzad, S.-G. Hong, M.A. Al-Harthi, Thermal degradation kinetics analysis of ethylene-propylene copolymer and EP-1-hexene terpolymer. Polymers (Basel) 14(3), 634 (2022). https://doi.org/10.3390/polym14030634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A.C. dos Ouros, M.O. de Souza, H.O. Pastore, Metallocene supported on inorganic solid supports: an unfinished history. J. Braz. Chem. Soc. (2014). https://doi.org/10.5935/0103-5053.20140247

    Article  Google Scholar 

  14. C. Nyambo, E. Kandare, D. Wang, C.A. Wilkie, Flame-retarded polystyrene: Investigating chemical interactions between ammonium polyphosphate and MgAl layered double hydroxide. Polym. Degrad. Stab. 93(9), 1656–1663 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.05.029

    Article  CAS  Google Scholar 

  15. X. Zhang, X. Yan, J. Guo et al., Polypyrrole doped epoxy resin nanocomposites with enhanced mechanical properties and reduced flammability. J. Mater. Chem. C (2015). https://doi.org/10.1039/c4tc01978d

    Article  Google Scholar 

  16. S. Elbasuney, Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 277, 63–73 (2015). https://doi.org/10.1016/j.powtec.2015.02.044

    Article  CAS  Google Scholar 

  17. Y. Gao, Q. Wang, J. Wang et al., Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. ACS Appl. Mater. Interfaces 6(7), 5094–5104 (2014). https://doi.org/10.1021/am500265a

    Article  CAS  PubMed  Google Scholar 

  18. R. Ma, Z. Liu, K. Takada, N. Iyi, Y. Bando, T. Sasaki, Synthesis and exfoliation of Co2+-Fe3+ layered double hydroxides: an innovative topochemical approach. J. Am. Chem. Soc. 129(16), 5257–5263 (2007). https://doi.org/10.1021/ja0693035

    Article  CAS  PubMed  Google Scholar 

  19. J.-C. Buffet, N. Wanna, T.A.Q. Arnold et al., Highly tunable catalyst supports for single-site ethylene polymerization. Chem. Mater. 27(5), 1495–1501 (2015). https://doi.org/10.1021/cm503433q

    Article  CAS  Google Scholar 

  20. E.N. Kalali, A. Montes, X. Wang et al., Effect of phytic acid–modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system. Fire Mater. 42(2), 213–220 (2018). https://doi.org/10.1002/fam.2482

    Article  CAS  Google Scholar 

  21. F. Shehzad, M.A. Al-Harthi, Graphite-LDH hybrid supported zirconocene for ethylene polymerization: influence of the support on the crystallization kinetics and thermal stability of polyethylene. Appl. Clay Sci. 202, 105947 (2021). https://doi.org/10.1016/j.clay.2020.105947

    Article  CAS  Google Scholar 

  22. H. Mazhar, F. Shehzad, S. Hong, M.A. Al-harthi, Degradation kinetics and thermomechanical properties of in-situ polymerized layered double hydroxides-ethylene-propylene copolymer. J. Appl. Polym. Sci. (2021). https://doi.org/10.1002/app.52002

    Article  Google Scholar 

  23. D. Banerjee, A. Jha, K.K. Chattopadhyay, Synthesis and characterization of water soluble functionalized amorphous carbon nanotube-poly(vinyl alcohol) composite. Macromol. Res. 20(10), 1021–1028 (2012). https://doi.org/10.1007/s13233-012-0154-7

    Article  CAS  Google Scholar 

  24. L. Feng, W. Li, J. Ren, X. Qu, Electrochemically and DNA-triggered cell release from ferrocene/β-cyclodextrin and aptamer modified dualfunctionalized graphene substrate. Nano Res. 8(3), 887–899 (2015). https://doi.org/10.1007/s12274-014-0570-4

    Article  CAS  Google Scholar 

  25. C. Park, Z. Ounaies, K.A. Watson et al., Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364(3–4), 303–308 (2002). https://doi.org/10.1016/S0009-2614(02)01326-X

    Article  CAS  Google Scholar 

  26. A. Funck, W. Kaminsky, Polypropylene carbon nanotube composites by in situ polymerization. Compos. Sci. Technol. 67(5), 906–915 (2007). https://doi.org/10.1016/j.compscitech.2006.01.034

    Article  CAS  Google Scholar 

  27. M.R. Pérez, I. Pavlovic, C. Barriga, J. Cornejo, M.C. Hermosín, M.A. Ulibarri, Uptake of Cu2+, Cd2+ and Pb2+ on Zn–Al layered double hydroxide intercalated with edta. Appl. Clay Sci. 32(3–4), 245–251 (2006). https://doi.org/10.1016/j.clay.2006.01.008

    Article  CAS  Google Scholar 

  28. S. Nayak, K. Parida, Plethora of preparatory features on single layered double hydroxide towards energy conversion process. Mater. Res. Bull. 162, 112185 (2023). https://doi.org/10.1016/j.materresbull.2023.112185

    Article  CAS  Google Scholar 

  29. M. Eili, K. Shameli, N.A. Ibrahim, W.M.Z. Wan Yunus, Degradability enhancement of poly(lactic acid) by stearate-Zn3Al LDH nanolayers. Int. J. Mol. Sci. 13(7), 7938–7951 (2012). https://doi.org/10.3390/ijms13077938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. García-peñas, R. Barranco-garcía, E. Blázquez-blázquez, M.L. Cerrada, Microstructural details and polymorphs in poly (propylene-co-1-nonene) copolymers synthesized at different polymerization temperatures. Polym. Cryst. (2021). https://doi.org/10.1002/pcr2.10150

    Article  Google Scholar 

  31. P. Ernesto, Microstructure of Metallocene Isotactic Propylene-co-1-Pentene-co-1-Hexene Terpolymers. J. Polym. Sci. Part A: Polym. Chem. (2014). https://doi.org/10.1002/pola.27270

    Article  Google Scholar 

  32. D.A. Silva, G.B. Galland, Synthesis and characterization of ethylene-propylene-1-pentene terpolymers. 947–957 (2007). https://doi.org/10.1002/pola

  33. T.S. Munonde, H. Zheng, The impact of ultrasonic parameters on the exfoliation of NiFe LDH nanosheets as electrocatalysts for the oxygen evolution reaction in alkaline media. Ultrason. Sonochem. 76, 105664 (2021). https://doi.org/10.1016/j.ultsonch.2021.105664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Kenyon, D.J. Leung, M. Lyu, C. Chen, Z.R. Turner, J.C. Buffet, D. O'Hare, Controlling the activity of an immobilised molecular catalyst by lewis acidity tuning of the support. J. Catal. 402, 94–100 (2021). https://doi.org/10.1016/j.jcat.2021.08.019

    Article  CAS  Google Scholar 

  35. J.C. Buffet, Z.R. Turner, R.T. Cooper, D. O’Hare, Ethylene polymerisation using solid catalysts based on layered double hydroxides. Polym. Chem. 6(13), 2493–2503 (2015). https://doi.org/10.1039/c4py01742k

    Article  CAS  Google Scholar 

  36. G.E. Hickman, C.M.R. Wright, A.F.R. Kilpatrick, Z.R. Turner, J.C. Buffet, D. O’Hare, Synthesis, characterisation and slurry phase ethylene polymerisation of rac-(PhBBI*)ZrCl2 immobilised on modified layered double hydroxides. Mol. Catal. 468, 139–147 (2019). https://doi.org/10.1016/j.mcat.2019.02.025

    Article  CAS  Google Scholar 

  37. J.C. Buffet, C.F.H. Byles, R. Felton, C. Chen, D. O’Hare, Metallocene supported core@LDH catalysts for slurry phase ethylene polymerisation. Chem. Commun. 52(21), 4076–4079 (2016). https://doi.org/10.1039/c6cc00280c

    Article  CAS  Google Scholar 

  38. L. Korach, K. Czaja, Synthesis and activity of zirconocene catalysts supported on silica-type sol-gel carrier for ethylene polymerization. Polym. Bull. 46(1), 67–74 (2001). https://doi.org/10.1007/s002890170090

    Article  CAS  Google Scholar 

  39. J.M. Campos, J.P. Lourenço, A. Fernandes, A.M. Rego, M.R. Ribeiro, Mesoporous Ga-MCM-41 as support for metallocene catalysts: Acidity–activity relationship. J. Mol. Catal. A Chem. 310(1–2), 1–8 (2009). https://doi.org/10.1016/j.molcata.2009.05.012

    Article  CAS  Google Scholar 

  40. A. García-Peñas, J.M. Gómez-Elvira, E. Pérez, M.L. Cerrada, Isotactic poly(propylene- co -1-pentene- co -1-hexene) terpolymers: Synthesis, molecular characterization, and evidence of the trigonal polymorph. J. Polym. Sci. Part A Polym. Chem. 51(15), 3251–3259 (2013). https://doi.org/10.1002/pola.26717

    Article  CAS  Google Scholar 

  41. F.A. He, L.M. Zhang, Organo-modified ZnAl layered double hydroxide as new catalyst support for the ethylene polymerization. J Colloid. Interface Sci. 315(2), 439–444 (2007). https://doi.org/10.1016/j.jcis.2007.06.079

    Article  CAS  PubMed  Google Scholar 

  42. Y. Gao, Y. Zhang, G.R. Williams, D. O’Hare, Q. Wang, Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene. Sci. Rep. 6(1), 35502 (2016). https://doi.org/10.1038/srep35502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Liu, Y. Gao, Q. Wang, W. Lin, The synergistic effect of layered double hydroxides with other flame retardant additives for polymer nanocomposites: a critical review. Dalt. Trans. 47(42), 14827–14840 (2018). https://doi.org/10.1039/C8DT02949K

    Article  CAS  Google Scholar 

  44. P. Das, P. Tiwari, Thermal degradation kinetics of plastics and model selection. Thermochim. Acta. 654, 191–202 (2017). https://doi.org/10.1016/j.tca.2017.06.001

    Article  CAS  Google Scholar 

  45. M.A. Bashir, Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids 2(1), 108–120 (2021). https://doi.org/10.3390/solids2010006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the S-Oil Corporation, Republic of Korea and KFUPM, for funding this work under Project CHE02475. The authors declare no conflict of interest.

Funding

S-Oil Corporation South Korea, CHE02475.

Author information

Authors and Affiliations

Authors

Contributions

HM: methodology, conceptualization, data curation, original manuscript preparation. WK: wrote the original manuscript. FS: review and editing. SGH: supervision, funding, and chemicals. MH: supervision, conceptualization, review, lab facility, and funding acquisition.

Corresponding author

Correspondence to Mamdouh A. Al-Harthi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6552 KB)

Supplementary file2 (DOCX 2082 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazhar, H., Khan, W.U., Shehzad, F. et al. Nanoarchitectonics Based on Ultrasonication-Assisted Polymerization for Enhanced Interaction Between Liquid Monomer and LDH Nanosheets. J Inorg Organomet Polym 33, 2013–2022 (2023). https://doi.org/10.1007/s10904-023-02646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02646-4

Keywords

Navigation