Skip to main content
Log in

Comprehensive analysis of two-dimensional charge transport mechanism in thin-film transistors based on random networks of single-wall carbon nanotubes using transient measurements

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding charge transport mechanisms in thin-film transistors based on random networks of single-wall carbon nanotubes (SWCNT-TFTs) is essential for further advances to improve the potential for various nanoelectronic applications. Herein, a comprehensive investigation of the two-dimensional (2D) charge transport mechanism in SWCNT-TFTs is reported by analyzing the temperature-dependent electrical characteristics determined from the direct-current and non-quasi-static transient measurements at 80–300 K. To elucidate the time-domain charge transport characteristics of the random networks in the SWCNTs, an empirical equation was derived from a theoretical trapping model, and a carrier velocity distribution was determined from the differentiation of the transient response. Furthermore, charge trapping and de-trapping in shallow- and deep-traps in SWCNT-TFTs were analyzed by investigating charge transport based on their trapping/de-trapping rate. The comprehensive analysis of this study provides fundamental insights into the 2D charge transport mechanism in TFTs based on random networks of nanomaterial channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P. V.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 2013, 12, 1038–1044.

    Article  CAS  Google Scholar 

  2. Liu, C.; Zhang, D. D.; Duan, L. A novel anthracene derivative with an asymmetric structure as an electron transport material for stable Rec. 2020 blue organic light-emitting diodes. J. Inf. Dis. 2020, 21, 197–201.

    Article  CAS  Google Scholar 

  3. Li, S. L.; Tsukagoshi, K.; Orgiu, E.; Samorì, P. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 2016, 45, 118–151.

    Article  CAS  Google Scholar 

  4. Lassagne, B.; Tarakanov, Y.; Kinaret, J.; Garcia-Sanchez, D.; Bachtold, A. Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 2009, 325, 1107–1110.

    Article  CAS  Google Scholar 

  5. Nikitenko, V. R.; von Seggern, H.; Bässler, H. Non-equilibrium transport of charge carriers in disordered organic materials. J. Phys. Condens. Matter 2007, 19, 136210.

    Article  Google Scholar 

  6. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926–952.

    Article  CAS  Google Scholar 

  7. Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.

    Article  Google Scholar 

  8. Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335.

    Article  CAS  Google Scholar 

  9. Fratini, S.; Xie, H.; Hulea, I. N.; Ciuchi, S.; Morpurgo, A. F. Current saturation and Coulomb interactions in organic single-crystal transistors. New J. Phys. 2008, 10, 033031.

    Article  Google Scholar 

  10. Bittle, E. G.; Basham, J. I.; Jackson, T. N.; Jurchescu, O. D.; Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908.

    Article  CAS  Google Scholar 

  11. Un, H. I.; Cheng, P.; Lei, T.; Yang, C. Y.; Wang, J. Y.; Pei, J. Charge-trapping-induced non-ideal behaviors in organic field-effect transistors. Adv. Mater. 2018, 30, 1800017.

    Article  Google Scholar 

  12. Illarionov, Y. Y.; Waltl, M.; Rzepa, G.; Kim, J. S.; Kim, S.; Dodabalapur, A.; Akinwande, D.; Grasser, T. Long-term stability and reliability of black phosphorus field-effect transistors. ACS Nano 2016, 10, 9543–9549.

    Article  CAS  Google Scholar 

  13. Mathijssen, S. G. J.; Cölle, M.; Gomes, H.; Smits, E. C. P.; de Boer, B.; McCulloch, I.; Bobbert, P. A.; de Leeuw, D. M. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 2007, 19, 2785–2789.

    Article  CAS  Google Scholar 

  14. Kang, B. H.; Jung, S. J.; Hong, S.; Lee, I. S.; Hong, S.; Kim, S.; Kim, H. J. Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. J. Inf. Dis. 2020, 21, 123–130.

    Article  CAS  Google Scholar 

  15. Park, J.; Hur, J. H.; Jeon, S. Quantitative analysis of charge trapping and classification of sub-gap states in MoS2 TFT by Pulse I-V method. Nanotechnology 2018, 29, 175704.

    Article  Google Scholar 

  16. Yangm Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

    Article  Google Scholar 

  17. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  18. Jeon, J. Y.; Kang, B. C.; Ha, T. J. Flexible pH sensors based on printed nanocomposites of single-wall carbon nanotubes and Nafion. Appl. Surf. Sci. 2020, 514, 145956.

    Article  CAS  Google Scholar 

  19. Lei, T.; Shao, L. L.; Zheng, Y. Q.; Pitner, G.; Fang, G. H.; Zhu, C. X.; Li, S. C.; Beausoleil, R.; Wong, H. S. P.; Huang, T. C. et al. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161.

    Article  Google Scholar 

  20. Deshmukh, M. A.; Kang, B. C.; Jeon, J. Y.; Ha, T. J. Stable dispersions of single-wall carbon nanotubes using self-assembled amphiphilic copolymer surfactants for fabricating wafer-scale devices. ACS Appl. Nano Mater. 2020, 3, 8829–8839.

    Article  CAS  Google Scholar 

  21. Poudel, Y. R.; Li, W. Z. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys. 2018, 7, 7–34.

    Article  Google Scholar 

  22. Chen, H. T.; Cao, Y.; Zhang, J. L.; Zhou, C. W. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 2014, 5, 4097.

    Article  CAS  Google Scholar 

  23. Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361–394.

    Article  CAS  Google Scholar 

  24. Brohmann, M.; Rother, M.; Schießl, S. P.; Preis, E.; Allard, S.; Scherf, U.; Zaumseil, J. Temperature-dependent charge transport in polymer-sorted semiconducting carbon nanotube networks with different diameter distributions. J. Phys. Chem. C 2018, 122, 19886–19896.

    Article  CAS  Google Scholar 

  25. Weis, M.; Lin, J.; Taguchi, D.; Manaka, T.; Iwamoto, M. Analysis of transient currents in organic field effect transistor: The time-of-flight method. J. Phys. Chem. C 2009, 113, 18459–18461.

    Article  CAS  Google Scholar 

  26. Manaka, T.; Liu, F.; Weis, M.; Iwamoto, M. Influence of traps on transient electric field and mobility evaluation in organic field-effect transistors. J. Appl. Phys. 2010, 107, 043712.

    Article  Google Scholar 

  27. Dunn, L.; Dodabalapur, A. Temperature dependent transient velocity and mobility studies in an organic field effect transistor. J. Appl. Phys. 2010, 107, 113714.

    Article  Google Scholar 

  28. Engel-Herbert, R.; Hwang, Y.; Stemmer, S. Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces. J. Appl. Phys. 2010, 108, 124101.

    Article  Google Scholar 

  29. Li, H. T.; Huang, P.; Gao, B.; Chen, B.; Liu, X. Y.; Kang, J. F. A SPICE model of resistive random access memory for large-scale memory array simulation. IEEE Electron Device Lett. 2014, 35, 211–213.

    Article  CAS  Google Scholar 

  30. Brohmann, M.; Berger, F. J.; Matthiesen, M.; Schießl, S. P.; Schneider, S.; Zaumseil, J. Charge transport in mixed semiconducting carbon nanotube networks with tailored mixing ratios. ACS Nano 2019, 13, 7323–7332.

    Article  CAS  Google Scholar 

  31. Ha, T. J.; Chen, K.; Chuang, S.; Yu, K. M.; Kiriya, D.; Javey, A. Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 2015, 15, 392–397.

    Article  CAS  Google Scholar 

  32. Vellingiri, L.; Annamalai, K.; Kandasamy, R.; Kombiah, I. Single-walled carbon nanotubes/lithium borohydride composites for hydrogen storage: Role of in situ formed LiB(OH)4, Li2CO3 and LiBO2 by oxidation and nitrogen annealing. RSC Adv. 2019, 9, 31483–31496.

    Article  CAS  Google Scholar 

  33. Oh, J. W.; Heo, J.; Kim, T. H. An electrochemically modulated singlewalled carbon nanotube network for the development of a transparent flexible sensor for dopamine. Sens. Actuators B Chem. 2018, 267, 438–447.

    Article  CAS  Google Scholar 

  34. Kalbac, M.; Hsieh, Y. P.; Farhat, H.; Kavan, L.; Hofmann, M.; Kong, J.; Dresselhaus, M. S. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. Nano Lett. 2010, 10, 4619–4626.

    Article  CAS  Google Scholar 

  35. Telg, H.; Duque, J. G.; Staiger, M.; Tu, X. M.; Hennrich, F.; Kappes, M. M.; Zheng, M.; Maultzsch, J.; Thomsen, C.; Doorn, S. K. Chiral index dependence of the G+ and G Raman modes in semiconducting carbon nanotubes. ACS Nano 2012, 6, 904–911.

    Article  CAS  Google Scholar 

  36. Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

    Article  Google Scholar 

  37. Jin, S. H.; Shin, J.; Cho, I. T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J. H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.

    Article  Google Scholar 

  38. Jin, S. H.; Islam, A. E.; Kim, T. I.; Kim, J. H.; Alam, M. A.; Rogers, J. A. Sources of hysteresis in carbon nanotube field-effect transistors and their elimination via methylsiloxane encapsulants and optimized growth procedures. Adv. Funct. Mater. 2012, 22, 2276–2284.

    Article  CAS  Google Scholar 

  39. Gao, J.; Loo, Y. L. Temperature-dependent electrical transport in polymer-sorted semiconducting carbon nanotube networks. Adv. Funct. Mater. 2015, 25, 105–110.

    Article  CAS  Google Scholar 

  40. McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J. Improved organic thin-film transistor performance using novel self-assembled monolayers. Appl. Phys. Lett. 2006, 88, 073505.

    Article  Google Scholar 

  41. Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.

    Article  Google Scholar 

  42. Horowitz, G.; Hajlaoui, M. E.; Hajlaoui, R. Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors. J. Appl. Phys. 2000, 87, 4456.

    Article  CAS  Google Scholar 

  43. Ha, T. J.; Sonar, P.; Cobb, B.; Dodabalapur, A. Charge transport and density of trap states in balanced high mobility ambipolar organic thin-film transistors. Org. Electron. 2012, 13, 136–141.

    Article  CAS  Google Scholar 

  44. Kalb, W. L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327.

    Article  Google Scholar 

  45. Okubo, M.; Tanaka, Y.; Zhou, H. S.; Kudo, T.; Honma, I. Determination of activation energy for Li ion diffusion in electrodes. J. Phys. Chem. B 2009, 113, 2840–2847.

    Article  CAS  Google Scholar 

  46. Harada, Y.; Eriguchi, K.; Niwa, M.; Watanabe, T.; Ohdomari, I. Impact of structural strained layer near SiO2/Si interface on activation energy of time-dependent dielectric breakdown. Jpn. J. Appl. Phys. 2000, 39, 4687.

    Article  CAS  Google Scholar 

  47. Park, Y.; Baac, H. W.; Heo, J.; Yoo, G. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors. Appl. Phys. Lett. 2016, 108, 083102.

    Article  Google Scholar 

  48. Kim, W. S.; Moon, Y. K.; Kim, K. T.; Shin, S. Y.; Ahn, B. D.; Lee, J. H.; Park, J. W. The influence of hafnium doping on bias stability in zinc oxide thin film transistors. Thin Solid Films 2011, 519, 5161–5164.

    Article  CAS  Google Scholar 

  49. Chen, K. Y.; Yang, C. C.; Huang, C. Y.; Su, Y. K. ALD gate dielectric on the reduction of interface trap density and the enhanced photo-electric performance of IGO TFT. RSC Adv. 2020, 10, 9902–9906.

    Article  CAS  Google Scholar 

  50. Chen, G.; Xu, Z. Q. Charge trapping and detrapping in polymeric materials. J. Appl. Phys. 2009, 106, 123707.

    Article  Google Scholar 

  51. Park, R. S.; Shulaker, M. M.; Hills, G.; Liyanage, L. S.; Lee, S.; Tang, A.; Mitra, S.; Wong, H. S. P. Hysteresis in carbon nanotube transistors: Measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 2016, 10, 4599–4608.

    Article  CAS  Google Scholar 

  52. Germs, W. C.; van der Holst, J. J. M.; van Mensfoort, S. L. M.; Bobbert, P. A.; Coehoorn, R. Modeling of the transient mobility in disordered organic semiconductors with a Gaussian density of states. Phys. Rev. B 2011, 84, 165210.

    Article  Google Scholar 

  53. McNeill, C. R.; Hwang, I.; Greenham, N. Photocurrent transients in all-polymer solar cells: Trapping and detrapping effects. J. Appl. Phys. 2009, 106, 024507.

    Article  Google Scholar 

  54. Jafari, S.; Zhu, Y.; Rougieux, F.; Guzman, J. A. T. D.; Markevich, V. P.; Peaker, A. R.; Hameiri, Z. On the correlation between light-induced degradation and minority carrier traps in boron-doped czochralski silicon. ACS Appl. Mater. Interfaces 2021, 13, 6140–6146.

    Article  CAS  Google Scholar 

  55. Park, B.; Jang, J.; Kim, H.; Seo, J.; Yoo, H.; Kim, T.; Hong, Y. Dense assembly of finely patterned semiconducting single-walled carbon nanotubes via a selective transfer method of nanotube-attracting layers. ACS Appl. Mater. Interfaces 2020, 12, 38441–38450.

    Article  CAS  Google Scholar 

  56. Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2021R1A2C2012855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jun Ha.

Electronic Supplementary Material

12274_2021_3697_MOESM1_ESM.pdf

Comprehensive analysis of two-dimensional charge transport mechanism in thin-film transistors based on random networks of single-wall carbon nanotubes using transient measurements

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, H., Park, SJ., Kang, BC. et al. Comprehensive analysis of two-dimensional charge transport mechanism in thin-film transistors based on random networks of single-wall carbon nanotubes using transient measurements. Nano Res. 15, 1524–1531 (2022). https://doi.org/10.1007/s12274-021-3697-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3697-0

Keywords

Navigation