Skip to main content
Log in

Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The sluggish reaction kinetics in oxygen reduction reaction (ORR) is one of the bottlenecks in next generation energy conversion systems. The integrated design strategy based on simultaneously constructing active sites and forming porous carbon network will address this concern by facilitating charge exchange, mass transfer and electron transportation. In this article, a three-dimensional integrated air electrode (Co-N@ACS) containing Co-N sites and hierarchically porous carbon is fabricated via growth of Co-doped ZIF-8 in activated wood substrate and synchronous pyrolysis. The optimized integrated air electrodes exhibit ultrahigh ORR activity (E1/2 = 0.86 V). Co-N sites provide outstanding ORR activity, and hierarchically porous structures facilitate oxygen diffusion and electrolyte penetration. Aqueous zinc-air battery assembled with Co-N@ACS possesses open-circuit voltage of 1.46 V, peak power density of 155 mW·cm2 and long-term stability of 540 cycles (180 h). Solid-state zinc-air battery assembled with Co-N@ACS shows open-circuit voltage up to 1.36 V and low charge-discharge voltage gap (0.8 V). This design strategy paves the way for the conversion of wood biomass to integrated air electrodes and catalytically active carbon for next generation energy storage and conversion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  2. Peng, W.; Wang, Y.; Yang, X. X.; Mao, L. C.; Jin, J. H.; Yang, S. L.; Fu, K.; Li, G. Co9S8 nanoparticles embedded in multiple doped and electrospun hollow carbon nanofibers as bifunctional oxygen electrocatalysts for rechargeable zinc-air battery. Appl. Catal. B: Environ. 2020, 268, 118437.

    Article  CAS  Google Scholar 

  3. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

    Article  CAS  Google Scholar 

  4. Xu, N. N.; Wilson, J. A.; Wang, Y. D.; Su, T. S.; Wei, Y. N.; Qiao, J. l.; Zhou, X. D.; Zhang, Y. X.; Sun, S. H. Flexible self-supported bi-metal electrode as a highly stable carbon-and binder-free cathode for large-scale solid-state zinc-air batteries. Appl. Catal. B: Environ. 2020, 272, 118953.

    Article  CAS  Google Scholar 

  5. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  6. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  7. Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

    Article  CAS  Google Scholar 

  8. She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, K. H. Bubble-like Fe-encapsulated N, S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. Nano Res. 2020, 13, 2175–2182.

    Article  Google Scholar 

  9. Shen, M. X.; Wei, C. T.; Ai, K. L.; Lu, L. H. Transition metal-nitrogen-carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 2017, 10, 1449–1470.

    Article  CAS  Google Scholar 

  10. Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

    Article  CAS  Google Scholar 

  11. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Antink, W. H.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    Article  CAS  Google Scholar 

  12. Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    Article  CAS  Google Scholar 

  13. Li, J. Z; Chen, M. J; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  14. Kuang, M.; Wang, Q. H.; Han, P.; Zheng, G. F. Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 2017, 7, 1700193.

    Article  Google Scholar 

  15. Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual Sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ. 2019, 240, 112–121.

    Article  CAS  Google Scholar 

  16. Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.

    Article  Google Scholar 

  17. Zhao, S. L.; Yang, J.; Han, M.; Wang, X. M.; Lin, Y.; Yang, R.; Xu, D. D.; Shi, N. E.; Wang, Q.; Yang, M. J. et al. Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Appl Catal. B: Environ. 2020, 260, 118207.

    Article  CAS  Google Scholar 

  18. Shen, F.; Luo, W.; Dai, J. Q.; Yao, Y. G.; Zhu, M. W.; Hitz, E.; Tang, Y. F.; Chen, Y. F.; Sprenkle, V. L.; Li, X. L. et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600377.

    Article  Google Scholar 

  19. Wu, C. L.; Zhang, S.; Wu, W.; Xi, Z. W.; Zhou, C.; Wang, X.; Deng, Y. Y.; Bai, Y. J.; Liu, G. G.; Zhang, X. et al. Carbon nanotubes grown on the inner wall of carbonized wood tracheids for high-performance supercapacitors. Carbon 2019, 150, 311–318.

    Article  CAS  Google Scholar 

  20. Chen, C. J.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Yao, Y. G.; Gong, Y. H.; Kierzewski, I.; Xie, J.; Hu, L. B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538–545.

    Article  CAS  Google Scholar 

  21. Zhu, C. L.; Du, L.; Luo, J. M.; Tang, H. B.; Cui, Z. M.; Song, H. Y.; Liao, S. J. A renewable wood-derived cathode for Li-O2 batteries. J. Mater. Chem. A 2018, 6, 14291–14298.

    Article  CAS  Google Scholar 

  22. Hwang, J.; Ejsmont, A.; Freund, R.; Goscianska, J.; Schmidt, B. V. K. J.; Wuttke, S. Controlling the morphology of metal-organic frameworks and porous carbon materials: Metal oxides as primary architecture-directing agents. Chem. Soc. Rev. 2020, 49, 3348–3422.

    Article  CAS  Google Scholar 

  23. Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

    Article  Google Scholar 

  24. Li, W. B. Metal-organic framework membranes: Production, modification, and applications. Prog. Mater. Sci. 2019, 100, 21–63.

    Article  Google Scholar 

  25. Amiinu, I. S.; Liu, X. B.; Pu, Z. H.; Li, W. Q.; Li, Q. D.; Zhang, J.; Tang, H. L.; Zhang, H. N.; Mu, S. C. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1704638.

    Article  Google Scholar 

  26. Yang, H. Z.; Wang, X. Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 2019, 31, 1800743.

    Article  Google Scholar 

  27. Douka, A. I.; Xu, Y. Y.; Yang, H.; Zaman, S.; Yan, Y.; Liu, H. F.; Salam, M. A.; Xia, B. Y. A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 2020, 32, 2002170.

    Article  CAS  Google Scholar 

  28. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  CAS  Google Scholar 

  29. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  CAS  Google Scholar 

  30. Xu, Y. X.; Li, B.; Zheng, S. S.; Wu, P.; Zhan, J. Y.; Xue, H. G.; Xu, Q.; Pang, H. Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution, J. Mater. Chem. A 2018, 6, 22070–22076.

    Article  CAS  Google Scholar 

  31. Pustovarenko, A.; Goesten, M. G.; Sachdeva, S.; Shan, M.; Amghouz, Z.; Belmabkhout, Y.; Dikhtiarenko, A.; Rodenas, T.; Keskin, D.; Voets, I. K. et al. Nanosheets of nonlayered aluminum metal-organic frameworks through a surfactant-assisted method. Adv. Mater. 2018, 30, 1707234.

    Article  Google Scholar 

  32. He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250–260.

    Article  CAS  Google Scholar 

  33. Han, L.; Cui, X. Y.; Liu, Y. Y.; Han, G. S.; Wu, X. L.; Xu, C. B.; Li, B. J. Nitrogen and phosphorus modification to enhance the catalytic activity of biomass-derived carbon toward the oxygen reduction reaction. Sustainable Energy Fuels 2020, 4, 2707–2717.

    Article  CAS  Google Scholar 

  34. Zhu, H. L.; Luo, W.; Ciesielski, P. N.; Fang, Z. Q.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. B. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374.

    Article  CAS  Google Scholar 

  35. Jia, C.; Chen, C. J.; Mi, R. Y.; Li, T.; Dai, J. Q.; Yang, Z.; Pei, Y.; He, S. M.; Bian, H. Y.; Jang, S. H. et al. Clear wood toward high-performance building materials. ACS Nano 2019, 13, 9993–10001.

    Article  CAS  Google Scholar 

  36. Liu, G. G.; Chen, D. Y.; Liu, R. K.; Yu, Z. Y.; Jiang, J. L.; Liu, Y.; Hu, J. B.; Chang, S. S. Antifouling wood matrix with natural water transfer and microreaction channels for water treatment. ACS Sustainable Chem. Eng. 2019, 7, 6782–6791.

    Article  CAS  Google Scholar 

  37. Chen, C. J.; Song, J. W.; Zhu, S. Z.; Li, Y. J.; Kuang, Y. D.; Wan, J. Y.; Kirsch, D.; Xu, L. S.; Wang, Y. B.; Gao, T. T. et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem 2018, 4, 544–554.

    Article  CAS  Google Scholar 

  38. Tang, Z. J.; Pei, Z. X.; Wang, Z. F.; Li, H. F.; Zeng, J.; Ruan, Z. H.; Huang, Y.; Zhu, M. S.; Xue, Q.; Yu, J. et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 2018, 130, 532–543.

    Article  CAS  Google Scholar 

  39. Song, H. Y.; Xu, S. M.; Li, Y. J.; Dai, J. Q.; Gong, A.; Zhu, M. G.; Zhu, C. L.; Chen, C. J.; Chen, Y. N.; Yao, Y. G. et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Adv. Energy Mater. 2018, 8, 1701203.

    Article  Google Scholar 

  40. Peng, X. W.; Zhang, L.; Chen, Z. X.; Zhong, L. X.; Zhao, D. K.; Chi, X.; Zhao, X. X.; Li, L. G.; Lu, X. H.; Leng, K. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

    Article  Google Scholar 

  41. Tu, K. K.; Puértolas, B.; Adobes-Vidal, M.; Wang, Y. R.; Sun, J. G.; Traber, J.; Burgert, I.; Pérez-Ramírez, J.; Keplinger, T. Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties. Adv. Sci. 2020, 7, 1902897.

    Article  CAS  Google Scholar 

  42. Guo, R. X.; Cai, X. H.; Liu, H. W.; Yang, Z.; Meng, Y. J.; Chen, F. J.; Li, Y. J.; Wang, B. D. In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal. Environ. Sci. Technol. 2019, 53, 2705–2712.

    Article  CAS  Google Scholar 

  43. Guan, S. Y.; An, L. L.; Ashraf, S.; Zhang, L. N.; Liu, B. Z.; Fan, Y. P.; Li, B. J. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl. Catal. B: Environ. 2020, 269, 118775.

    Article  CAS  Google Scholar 

  44. Zhang, Q. R.; Tan, X.; Bedford, N. M.; Han, Z. J.; Thomsen, L.; Smith, S.; Amal, R.; Lu X. Y. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nat. Commun. 2020, 11, 4181.

    Article  Google Scholar 

  45. Wang, A. S.; Zhao, C. N.; Yu, M.; Wang, W. C. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B Environ. 2021, 281, 119514.

    Article  CAS  Google Scholar 

  46. Xu, N. N.; Zhang, Y. X.; Wang, M.; Fan, X. J.; Zhang, T.; Peng, L. W.; Zhou, X. D.; Qiao, J. L. High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy 2019, 65, 104021.

    Article  CAS  Google Scholar 

  47. Yan, L. T.; Xu, Y. L.; Chen, P.; Zhang, S.; Jiang, H. M.; Yang, L. Z.; Wang, Y.; Zhang, L.; Shen, J. X.; Zhao, X. B. et al. A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: A superior multifunctional electrode for overall water splitting and Zn-air batteries. Adv. Mater. 2020, 32, 2003313.

    Article  CAS  Google Scholar 

  48. Zhong, X. W.; Ye, S. L.; Tang, J.; Zhu, Y. M.; Wu, D. J.; Gu, M.; Pan, H.; Xu, B. M. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. Appl. Catal. B Environ. 2021, 286, 119891.

    Article  CAS  Google Scholar 

  49. Liu, Y. C.; Huang, B. B.; Zhang, X. F.; Huang, X.; Xie, Z. L. In-situ fabrication of nitrogen-doped carbon nanosheets containing highly dispersed single iron atoms for oxygen reduction reaction. J. Power Sources 2019, 412, 125–133.

    Article  CAS  Google Scholar 

  50. Lei, Z.; Tan, Y. Y.; Zhang Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from the National Natural Science Foundation of China (Nos. 31901272 and 22075254) is acknowledged. All the authors thank the Communist Party of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Liu or Jianchun Jiang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Liu, Y., Wu, X. et al. Wood-derived integrated air electrode with Co-N sites for rechargeable zinc-air batteries. Nano Res. 15, 1415–1423 (2022). https://doi.org/10.1007/s12274-021-3678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3678-3

Keywords

Navigation