Skip to main content
Log in

Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To further improve the quantum efficiency of atomically thin transition metal dichalcogenides (TMDs) is crucial for the realization of high-performance optoelectronic applications. To this regard, a few chemical or physical approaches such as superacid treatment, electrical gating, dielectric screening, and laser irradiation have been developed. In particular, the laser irradiation appears to be a more efficient way with good processability and spatial selectivity. However, the underlying mechanism especially about whether chemisorption or physisorption plays a more important role is still debatable. Here, we unravel the mystery of laser irradiation induced photoluminescence enhancement in monolayer WS2 by precisely controlling irradiation time and environment. It is found that the synergetic effect of physisorption and chemisorption is responsible for the photoluminescence enhancement, where the physisorption dominates with more than 74% contribution. The comprehensive understanding of the adsorption mechanism in laser-irradiated TMDs may trigger the potential applications for patterned light source, effective photosensor and ultrathin optical memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

    Article  CAS  Google Scholar 

  2. Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

    Article  Google Scholar 

  3. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Article  Google Scholar 

  4. Sheng, Y. W.; Chen, T. X.; Lu, Y.; Chang, R. J.; Sinha, S.; Warner, J. H. High-performance WS2 monolayer light-emitting tunneling devices using 2D materials grown by chemical vapor deposition. ACS Nano 2019, 13, 4530–4537.

    Article  CAS  Google Scholar 

  5. Tanoh, A. O. A.; Alexander-Webber, J.; Xiao, J.; Delport, G.; Williams, C. A.; Bretscher, H.; Gauriot, N.; Allardice, J.; Pandya, R.; Fan, Y. et al. Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett. 2019, 19, 6299–6307.

    Article  CAS  Google Scholar 

  6. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262–267.

    Article  CAS  Google Scholar 

  7. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    Article  CAS  Google Scholar 

  8. Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339–345.

    Article  CAS  Google Scholar 

  9. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.

    Article  CAS  Google Scholar 

  10. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    Article  CAS  Google Scholar 

  11. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Article  Google Scholar 

  12. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    Article  CAS  Google Scholar 

  13. Venkatakrishnan, A.; Chua, H.; Tan, P. X.; Hu, Z. L.; Liu, H. W.; Liu, Y. P.; Carvalho, A.; Lu, J. P.; Sow, C. H. Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano 2017, 11, 713–720.

    Article  CAS  Google Scholar 

  14. Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

    Article  CAS  Google Scholar 

  15. Sivaram, S. V.; Hanbicki, A. T.; Rosenberger, M. R.; Jernigan, G. G.; Chuang, H. J.; McCreary, K. M.; Jonker, B. T. Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces 2019, 11, 16147–16155.

    Article  CAS  Google Scholar 

  16. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

    Article  CAS  Google Scholar 

  17. Ardekani, H.; Younts, R.; Yu, Y. L.; Cao, L. Y.; Gundogdu, K. Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38240–38246.

    Article  CAS  Google Scholar 

  18. Lu, J. P.; Carvalho, A.; Chan, X. K.; Liu, H. W.; Liu, B.; Tok, E. S.; Loh, K. P.; Neto, A. H. C.; Sow, C. H. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 2015, 15, 3524–3532.

    Article  CAS  Google Scholar 

  19. Oh, H. M.; Han, G. H.; Kim, H.; Bae, J. J.; Jeong, M. S.; Lee, Y. H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236.

    Article  CAS  Google Scholar 

  20. Yuan, L.; Huang, L. B. Exciton dynamics and annihilation in WS2 2D semiconductors. Nanoscale 2015, 7, 7402–7408.

    Article  CAS  Google Scholar 

  21. Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 2015, 9, 4056–4063.

    Article  CAS  Google Scholar 

  22. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

    Article  Google Scholar 

  23. Kozawa, D.; Kumar, R.; Carvalho, A.; Amara, K. K.; Zhao, W. J.; Wang, S. F.; Toh, M.; Ribeiro, R. M.; Neto, A. H. C.; Matsuda, K. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 2014, 5, 4543.

    Article  CAS  Google Scholar 

  24. Li, Y. Z.; Shi, J.; Chen, H. Y.; Mi, Y.; Du, W. N.; Sui, X. Y.; Jiang, C. X.; Liu, W. Z.; Xu, H. Y.; Liu, X. F. Slow cooling of high-energy C excitons is limited by intervalley-transfer in monolayer MoS2. Laser Photonics Rev. 2019, 13, 1800270.

    Article  Google Scholar 

  25. Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S. M.; Lin, Z.; Zhou, C. J.; Perea-López, N.; Elías, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

    Article  Google Scholar 

  26. Yang, Y.; Gu, J.; Young, J. L.; Miller, E. M.; Turner, J. A.; Neale, N. R.; Beard, M. C. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 2015, 350, 1061–1065.

    Article  CAS  Google Scholar 

  27. Parkin, W. M.; Balan, A.; Liang, L. B.; Das, P. M.; Lamparski, M.; Naylor, C. H.; Rodríguez-Manzo, J. A.; Johnson, A. T. C.; Meunier, V.; Drndić, M. Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 2016, 10, 4134–4142.

    Article  CAS  Google Scholar 

  28. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

    Article  CAS  Google Scholar 

  29. Cai, H.; Yu, Y. L.; Lin, Y. C.; Puretzky, A. A.; Geohegan, D. B.; Xiao, K. Heterogeneities at multiple length scales in 2D layered materials: From localized defects and dopants to mesoscopic heterostructures. Nano Res. 2021, 14, 1625–1649.

    Article  Google Scholar 

  30. Prabhu, S.; Cindrella, L.; Kwon, O. J.; Mohanraju, K. Photoelec-trochemical, photocatalytic and photochromic performance of rGO-TiO2-WO3 composites. Mater. Chem. Phys. 2019, 224, 217–228.

    Article  CAS  Google Scholar 

  31. Thiyagarajan, K.; Muralidharan, M.; Sivakumar, K. Defects induced magnetism in WO3 and reduced graphene oxide-WO3 nanocomposites. J. Supercond. Novel Magn. 2018, 31, 117–125.

    Article  CAS  Google Scholar 

  32. Roy, S.; Choi, W.; Jeon, S.; Kim, D. H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y. M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530.

    Article  CAS  Google Scholar 

  33. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Article  Google Scholar 

  34. Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 2628–2635.

    Article  CAS  Google Scholar 

  35. Zhang, S. Y.; Hill, H. M.; Moudgil, K.; Richter, C. A.; Walker, A. R. H.; Barlow, S.; Marder, S. R.; Hacker, C. A.; Pookpanratana, S. J. Controllable, wide-ranging n-doping and p-doping of monolayer group 6 transition-metal disulfides and diselenides. Adv. Mater. 2018, 30, 1802991.

    Article  Google Scholar 

  36. Chiu, M. H.; Tseng, W. H.; Tang, H. L.; Chang, Y. H.; Chen, C. H.; Hsu, W. T.; Chang, W. H.; Wu, C. I.; Li, L. J. Band alignment of 2D transition metal dichalcogenide heterojunctions. Adv. Funct. Mater. 2017, 27, 1603756.

    Article  Google Scholar 

  37. Li, Y. Z.; Liu, W. Z.; Xu, H. Y.; Chen, H. Y.; Ren, H.; Shi, J.; Du, W. N.; Zhang, W.; Feng, Q. S.; Yan, J. X. et al. Unveiling bandgap evolution and carrier redistribution in multilayer WSe2: Enhanced photon emission via heat engineering. Adv. Opt. Mater. 2020, 8, 1901226.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. Li and J. Yan contributed equally to this work. This work was supported by the Program of National Natural Science Foundation of China (Nos. 51732003, 51872043, 61604037, 11874104, 12074060, and 12004069), the National Science Fund for Distinguished Young Scholars (No. 52025022), the “111” Project (No. B13013), the National Key Research and Development Program of China (Nos. 2016YFA0201902 and 2019YFB2205100), Fund from Ministry of Education (No. 6141A02033414), Shenzhen Nanshan District Pilotage Team Program (No. LHTD20170006), the China Postdoctoral Science Foundation funded project (Nos. 2020M681025, 2021T140109, and 2021M693905), the Fundamental Research Funds for the Central Universities (Nos. 2412020QD015, 2412019BJ006, 2412021ZD007, 2412021ZD012, and 2412019FZ034), Postdoctoral Science Foundation funded project from Jilin Province (No. 111865005), and the Fund from Jilin Province (Nos. YDZJ202101ZYTS049, YDZJ202101ZYTS041, YDZJ202101ZYTS133, JJKH20211273KJ, JJKH20211274KJ, and 20190103007JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weizhen Liu, Qiaoliang Bao or Haiyang Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yan, J., Chen, J. et al. Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2. Nano Res. 14, 4274–4280 (2021). https://doi.org/10.1007/s12274-021-3667-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3667-6

Keywords

Navigation