Skip to main content
Log in

Heterogeneities at multiple length scales in 2D layered materials: From localized defects and dopants to mesoscopic heterostructures

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials hold great promise for applications in optoelectronics, quantum information science, and energy conversion due to their remarkable properties imbued by their physical characteristics. Although heterogeneities in their intrinsic structure are the major challenges limiting their synthesis and predictable properties, they also provide a pathway to controllably tune the properties and broaden the potential of 2D materials. Heterogeneities that can be tailored, including defects, dopants, strain, edges, and layer stackings offer transformative opportunities in heterogeneous 2D materials through the introduction of novel properties for technological applications. This article provides a review of recent progress in studying heterogeneities in 2D materials. The review uses examples from our work to develop a strategy to understand the heterogeneities across multiple length scales to link the effect of heterogeneity at the nanoscale with the macroscale properties of 2D materials. We describe specific types of heterogeneities and explore novel synthesis and processing methods for their controlled production with example of the potential impact and applications enabled by their intriguing properties. Finally, we provide a perspective on how to extend the range of tunable properties through further engineering the heterogeneities in 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  2. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271.

    CAS  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    CAS  Google Scholar 

  4. Zhang, H.; Cheng, H. M.; Ye, P. D. 2D nanomaterials: Beyond graphene and transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 6009–6012.

    CAS  Google Scholar 

  5. Xu, K.; Yin, L.; Huang, Y.; Shifa, T. A.; Chu, J. W.; Wang, F.; Cheng, R. Q.; Wang, Z. X.; He, J. Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale 2016, 8, 16802–16818.

    CAS  Google Scholar 

  6. Cai, H.; Gu, Y. Y.; Lin, Y. C.; Yu, Y. L.; Geohegan, D. B.; Xiao, K. Synthesis and emerging properties of 2D layered III-VI metal chalcogenides. Appl. Phys. Rev. 2019, 6, 041312.

    Google Scholar 

  7. Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

    Google Scholar 

  8. Hu, Z. H.; Niu, T. C.; Guo, R.; Zhang, J. L.; Lai, M.; He, J.; Wang, L.; Chen, W. Two-dimensional black phosphorus: Its fabrication, functionalization and applications. Nanoscale 2018, 10, 21575–21603.

    CAS  Google Scholar 

  9. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  10. Geohegan, D. B.; Puretzky, A. A.; Boulesbaa, A.; Duscher, G.; Eres, G.; Li, X. F.; Liang, L. B.; Mahjouri-Samani, M.; Rouleau, C.; Tennyson, W. et al. Laser synthesis, processing, and spectroscopy of atomically-thin two dimensional materials. In Advances in the Application of Lasers in Materials Science; Ossi, P. M. Ed.; Springer: Cham, 2018; pp 1–37.

    Google Scholar 

  11. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  12. Li, Y. Z.; Shi, J.; Mi, Y.; Sui, X. Y.; Xu, H. Y.; Liu, X. F. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 2019, 7, 4304–4319.

    CAS  Google Scholar 

  13. Khan, K.; Tareen, A. K.; Aslam, M.; Zhang, Y. P.; Wang, R. H.; Ouyang, Z. B.; Gou, Z. Y.; Zhang, H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 2019, 11, 21622–21678.

    CAS  Google Scholar 

  14. Yun, Q. B.; Li, L. X.; Hu, Z. N.; Lu, Q. P.; Chen, B.; Zhang, H. Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 2020, 32, 1903826.

    CAS  Google Scholar 

  15. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    CAS  Google Scholar 

  16. Shi, J. P.; Ma, D. L.; Han, G. F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

    CAS  Google Scholar 

  17. Ferrari, A. C. Let there be light: Deterministic arrays of quantum emitters [Online]. Credit: Pawel Latawiec/Harvard University. http://www.eng.cam.ac.uk/news/let-there-be-light-deterministic-arrays-quantum-emitters (accessed May 27, 2020).

  18. Tonndorf, P.; Schmidt, R.; Schneider, R.; Kern, J.; Buscema, M.; Steele, G. A.; Castellanos-Gomez, A.; Van Der Zant, H. S. J.; De Vasconcellos, S. M.; Bratschitsch, R. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2015, 2, 347–352.

    CAS  Google Scholar 

  19. Ciarrocchi, A. A new 2D magnet draws future devices closer [Online]. https://actu.epfl.ch/news/a-new-2d-magnet-draws-future-devicescloser-4/ (accessed May 27, 2020).

  20. Li, W. F.; Fang, C. M.; Van Huis, M. A. Strong spin-orbit splitting and magnetism of point defect states in monolayer WS2. Phys. Rev. B 2016, 94, 195425.

    Google Scholar 

  21. Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W.; Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.

    Google Scholar 

  22. Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.

    CAS  Google Scholar 

  23. Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature 2013, 499, 419–425.

    CAS  Google Scholar 

  24. Li, X. F.; Lin, M. W.; Lin, J. H.; Huang, B.; Puretzky, A. A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S. T.; Chi, M. F. et al. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv. 2016, 2, e1501882.

    Google Scholar 

  25. Li, X. F.; Dong, J. C.; Idrobo, J. C.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K. Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc. 2017, 139, 482–491.

    CAS  Google Scholar 

  26. Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D. Q.; Chen, W. B.; Guo, H.; Jin, Z. H.; Shenoy, V. B.; Shi, L. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 2017, 11, 8192–8198.

    CAS  Google Scholar 

  27. Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

    CAS  Google Scholar 

  28. Wang, S. S.; Robertson, A.; Warner, J. H. Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 6764–6794.

    CAS  Google Scholar 

  29. Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

    CAS  Google Scholar 

  30. He, Y. M.; Clark, G.; Schaibley, J. R.; He, Y.; Chen, M. C.; Wei, Y. J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X. D. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497–502.

    CAS  Google Scholar 

  31. Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931–937.

    CAS  Google Scholar 

  32. Schuck, P. J.; Weber-Bargioni, A.; Ashby, P. D.; Ogletree, D. F.; Schwartzberg, A.; Cabrini, S. Life beyond diffraction: Opening new routes to materials characterization with next-generation optical near-field approaches. Adv. Funct. Mater. 2013, 23, 2539–2553.

    CAS  Google Scholar 

  33. Grosso, G.; Moon, H.; Lienhard, B.; Ali, S.; Efetov, D. K.; Furchi, M. M.; Jarillo-Herrero, P.; Ford, M. J.; Aharonovich, I.; Englund, D. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 2017, 8, 705.

    Google Scholar 

  34. Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333–6342.

    CAS  Google Scholar 

  35. Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Sumpter, B. G.; Meunier, V.; Geohegan, D. B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736–2744.

    CAS  Google Scholar 

  36. Mahjouri-Samani, M.; Liang, L. B.; Oyedele, A.; Kim, Y. S.; Tian, M. K.; Cross, N.; Wang, K.; Lin, M. W.; Boulesbaa, A.; Rouleau, C. M. et al. Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2−x crystals. Nano Lett. 2016, 16, 5213–5220.

    CAS  Google Scholar 

  37. Cong, X., Liu, X. L.; Lin, M. L.; Tan, P. H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Mater. Appl. 2020, 4, 13.

    CAS  Google Scholar 

  38. Mignuzzi, S.; Pollard, A. J.; Bonini, N.; Brennan, B.; Gilmore, I. S.; Pimenta, M. A.; Richards, D.; Roy, D. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 2015, 91, 195411.

    Google Scholar 

  39. Wang, K.; Puretzky, A. A.; Hu, Z. L.; Srijanto, B. R.; Li, X. F.; Gupta, N.; Yu, H.; Tian, M. K.; Mahjouri-Samani, M.; Gao, X. et al. Strain tolerance of two-dimensional crystal growth on curved surfaces. Sci. Adv. 2019, 5, eaav4028.

    CAS  Google Scholar 

  40. Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; Santosh, K. C.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.

    CAS  Google Scholar 

  41. Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S. M.; Lin, Z.; Zhou, C. J.; Perea-Lopez, N.; Elias, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

    Google Scholar 

  42. Liu, K. H.; Zhang, L. M.; Cao, T.; Jin, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    CAS  Google Scholar 

  43. Urbaszek, B.; Srivastava, A. Materials in flatland twist and shine. Nature 2019, 567, 39–40.

    CAS  Google Scholar 

  44. Zhou, W.; Kapetanakis, M. D.; Prange, M. P.; Pantelides, S. T.; Pennycook, S. J.; Idrobo, J. C. Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 2012, 109, 206803.

    Google Scholar 

  45. Liu, H. J.; Zheng, H.; Yang, F.; Jiao, L.; Chen, J. L.; Ho, W.; Gao, C. L.; Jia, J. F.; Xie, M. H. Line and point defects in MoSe2 bilayer studied by scanning tunneling microscopy and spectroscopy. ACS Nano 2015, 9, 6619–6625.

    CAS  Google Scholar 

  46. Sang, X. H.; Li, X. F.; Zhao, W.; Dong, J. C.; Rouleau, C. M.; Geohegan, D. B.; Ding, F.; Xiao, K.; Unocic, R. R. In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 2018, 9, 2051.

    Google Scholar 

  47. Dyck, O.; Ziatdinov, M.; Lingerfelt, D. B.; Unocic, R. R.; Hudak, B. M.; Lupini, A. R.; Jesse, S.; Kalinin, S. V. Atom-by-atom fabrication with electron beams. Nat. Rev. Mater. 2019, 4, 497–507.

    CAS  Google Scholar 

  48. Mendes, R. G.; Pang, J. B.; Bachmatiuk, A.; Ta, H. Q.; Zhao, L.; Gemming, T.; Fu, L.; Liu, Z. F.; Rümmeli, M. H. Electron-driven in situ transmission electron microscopy of 2D transition metal dichalcogenides and their 2D heterostructures. ACS Nano 2019, 13, 978–995.

    CAS  Google Scholar 

  49. Murthy, A. A.; Stanev, T. K.; Dos Reis, R.; Hao, S. Q.; Wolverton, C.; Stern, N. P.; Dravid, V. P. Direct visualization of electric-field-induced structural dynamics in monolayer transition metal dichalcogenides. ACS Nano 2020, 14, 1569–1576.

    CAS  Google Scholar 

  50. Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X. F.; San, X. H.; Xiao, K.; Unocic, R. R.; Vasudevan, R.; Jesse, S.; Kalinin, S. V. Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano 2017, 11, 12742–12752.

    CAS  Google Scholar 

  51. Maksov, A.; Dyck, O.; Wang, K.; Xiao, K.; Geohegan, D. B.; Sumpter, B. G.; Vasudevan, R. K.; Jesse, S.; Kalinin, S. V.; Ziatdinov, M. Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. npj Comput. Mater. 2019, 5, 12.

    Google Scholar 

  52. Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K. H.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K. et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001.

    Google Scholar 

  53. Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

    Google Scholar 

  54. Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T. M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520–1527.

    CAS  Google Scholar 

  55. Xu, X. L.; Chen, S. L.; Liu, S.; Cheng, X.; Xu, W. J.; Li, P.; Wan, Y.; Yang, S. Q.; Gong, W. T.; Yuan, K. et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc. 2019, 141, 2128–2134.

    CAS  Google Scholar 

  56. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    CAS  Google Scholar 

  57. Yu, Z. G.; Zhang, Y. W.; Yakobson, B. I. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano Lett. 2015, 15, 6855–6861.

    CAS  Google Scholar 

  58. Huang, B.; Yoon, M.; Sumpter, B. G.; Wei, S. H.; Liu, F. Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett. 2015, 115, 126806.

    Google Scholar 

  59. Li, X. F.; Lin, M. W.; Basile, L.; Hus, S. M.; Puretzky, A. A.; Lee, J.; Kuo, Y. C.; Chang, L. Y.; Wang, K.; Idrobo, J. C. et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240–8247.

    CAS  Google Scholar 

  60. Li, X. F.; Puretzky, A. A.; Sang, X. H.; Santosh, K. C.; Tian, M. K.; Ceballos, F.; Mahjouri-Samani, M.; Wang, K.; Unocic, R. R.; Zhao, H. et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 2017, 27, 1603850.

    Google Scholar 

  61. Iberi, V.; Liang, L. B.; Ievlev, A. V.; Stanford, M. G.; Lin, M. W.; Li, X. F.; Mahjouri-Samani, M.; Jesse, S.; Sumpter, B. G.; Kalinin, S. V. et al. Nanoforging single layer MoSe2 through defect engineering with focused helium ion beams. Sci. Rep. 2016, 6, 30481.

    CAS  Google Scholar 

  62. Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019, 141, 8928–8936.

    CAS  Google Scholar 

  63. Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751–756.

    CAS  Google Scholar 

  64. Koós, A. A.; Vancsó, P.; Szendrő, M.; Dobrik, G.; Silva, D. A.; Popov, Z. I.; Sorokin, P. B.; Henrard, L.; Hwang, C.; Biró, L. P. et al. Influence of native defects on the electronic and magnetic properties of CVD grown MoSe2 single layers. J. Phys. Chem. C 2019, 123, 24855–24864.

    Google Scholar 

  65. Jolie, W.; Murray, C.; Weiß, P. S.; Hall, J.; Portner, F.; Atodiresei, N.; Krasheninnikov, A. V.; Busse, C.; Komsa, H. P.; Rosch, A. et al. Tomonaga-luttinger liquid in a box: Electrons confined within MoS2 mirror-twin boundaries. Phys. Rev. X 2019, 9, 011055.

    CAS  Google Scholar 

  66. Komsa, H. P.; Krasheninnikov, A. V. Native defects in bulk and monolayer MoS2 from first principles. Phys. Rev. B 2015, 91, 125304.

    Google Scholar 

  67. Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. N.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. M. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

    CAS  Google Scholar 

  68. He, Y. M.; Tang, P. Y.; Hu, Z. L.; He, Q. Y.; Zhu, C.; Wang, L. Q.; Zeng, Q. S.; Golani, P.; Gao, G. H.; Fu, W. et al. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun. 2020, 11, 57.

    CAS  Google Scholar 

  69. Lehtinen, O.; Komsa, H. P.; Pulkin, A.; Whitwick, M. B.; Chen, M. W.; Lehnert, T.; Mohn, M. J.; Yazyev, O. V.; Kis, A.; Kaiser, U. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 2015, 9, 3274–3283.

    CAS  Google Scholar 

  70. Wang, Y. X.; Crespi, V. H. Theory of finite-length grain boundaries of controlled misfit angle in two-dimensional materials. Nano Lett. 2017, 17, 5297–5303.

    CAS  Google Scholar 

  71. Yu, H.; Gupta, N.; Hu, Z. L.; Wang, K.; Srijanto, B. R.; Xiao, K.; Geohegan, D. B.; Yakobson, B. I. Tilt grain boundary topology induced by substrate topography. ACS Nano 2017, 11, 8612–8618.

    CAS  Google Scholar 

  72. Nguyen, G. D.; Liang, L. B.; Zou, Q.; Fu, M. M.; Oyedele, A. D.; Sumpter, B. G.; Liu, Z.; Gai, Z.; Xiao, K.; Li, A. P. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 2018, 121, 086101.

    CAS  Google Scholar 

  73. Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

    Google Scholar 

  74. Zhu, H.; Wang, Q. X.; Zhang, C. X.; Addou, R.; Cho, K.; Wallace, R. M.; Kim, M. J. New Mo6Te6 sub-nanometer-diameter nanowire phase from 2H-MoTe2. Adv. Mater. 2017, 29, 1606264.

    Google Scholar 

  75. Liu, X. L.; Zhang, Z. H.; Wang, L. Q.; Yakobson, B. I.; Hersam, M. C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 2018, 17, 783–788.

    CAS  Google Scholar 

  76. Sutter, E.; Huang, Y.; Komsa, H. P.; Ghorbani-Asl, M.; Krasheninnikov, A. V.; Sutter, P. Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett. 2016, 16, 4410–4416.

    CAS  Google Scholar 

  77. Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.

    Google Scholar 

  78. Nguyen, G. D.; Oyedele, A. D.; Haglund, A.; Ko, W.; Liang, L. B.; Puretzky, A. A.; Mandrus, D.; Xiao, K.; Li, A. P. Atomically precise PdSe2 pentagonal nanoribbons. ACS Nano 2020, 14, 1951–1957.

    CAS  Google Scholar 

  79. Fu, M. M.; Liang, L. B.; Zou, Q.; Nguyen, G. D.; Xiao, K.; Li, A. P.; Kang, J. Y.; Wu, Z. M.; Gai, Z. Defects in highly anisotropic transitionmetal dichalcogenide PdSe2. J. Phys. Chem. Lett. 2020, 11, 740–746.

    CAS  Google Scholar 

  80. Shu, H. B.; Li, Y. H.; Niu, X. H.; Wang, J. L. Greatly enhanced optical absorption of a defective MoS2 monolayer through oxygen passivation. ACS Appl. Mater. Interfaces 2016, 8, 13150–13156.

    CAS  Google Scholar 

  81. Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

    CAS  Google Scholar 

  82. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J. et al. Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged and free excitons. Sci. Rep. 2013, 3, 2657.

    Google Scholar 

  83. Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503–506.

    CAS  Google Scholar 

  84. Luo, Y.; Shepard, G. D.; Ardelean, J. V.; Rhodes, D. A.; Kim, B.; Barmak, K.; Hone, J. C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142.

    CAS  Google Scholar 

  85. Palacios-Berraquero, C.; Kara, D. M.; Montblanch, A. R. P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A. K.; Loncar, M.; Ferrari, A. C.; Atature, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093.

    CAS  Google Scholar 

  86. Zhang, Z. C.; Li, L. K.; Horng, J.; Wang, N. Z.; Yang, F. Y.; Yu, Y. J.; Zhang, Y.; Chen, G. R.; Watanabe, K.; Taniguchi, T. et al. Strain-modulated bandgap and piezo-resistive effect in black phosphorus field-effect transistors. Nano Lett. 2017, 17, 6097–6103.

    CAS  Google Scholar 

  87. Stanford, M. G.; Pudasaini, P. R.; Gallmeier, E. T.; Cross, N.; Liang, L. B.; Oyedele, A.; Duscher, G.; Mahjouri-Samani, M.; Wang, K.; Xiao, K. et al. High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: Toward atomically thin circuits. Adv. Funct. Mater. 2017, 27, 1702829.

    Google Scholar 

  88. Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51.

    CAS  Google Scholar 

  89. Zhang, X. J.; Shao, Z. B.; Zhang, X. H.; He, Y. Y.; Jie, J. S. Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices. Adv. Mater. 2016, 28, 10409–10442.

    CAS  Google Scholar 

  90. Taghinejad, H.; Rehn, D. A.; Muccianti, C.; Eftekhar, A. A.; Tian, M. K.; Fan, T. R.; Zhang, X.; Meng, Y. Z.; Chen, Y. W.; Nguyen, T. V. et al. Defect-mediated alloying of monolayer transition-metal dichalcogenides. ACS Nano 2018, 12, 12795–12804.

    CAS  Google Scholar 

  91. Kutana, A.; Penev, E. S.; Yakobson, B. I. Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 2014, 6, 5820–5825.

    CAS  Google Scholar 

  92. Karthikeyan, J.; Komsa, H. P.; Batzill, M.; Krasheninnikov, A. V. Which transition metal atoms can Be embedded into two-dimensional molybdenum dichalcogenides and add magnetism? Nano Lett. 2019, 19, 4581–4587.

    CAS  Google Scholar 

  93. Li, X. F.; Basile, L.; Yoon, M.; Ma, C.; Puretzky, A. A.; Lee, J.; Idrobo, J. C.; Chi, M. F.; Rouleau, C. M.; Geohegan, D. B. et al. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals. Angew. Chem., Int. Ed. 2015, 54, 2712–2717.

    CAS  Google Scholar 

  94. Jin, Y.; Keum, D. H.; An, S. J.; Kim, J.; Lee, H. S.; Lee, Y. H. A van der waals homojunction: Ideal p-n diode behavior in MoSe2. Adv. Mater. 2015, 27, 5534–5540.

    CAS  Google Scholar 

  95. Li, X. F.; Lin, M. W.; Puretzky, A. A.; Basile, L.; Wang, K.; Idrobo, J. C.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Persistent photoconductivity in two-dimensional Mo1−xWxSe2-MoSe2 van der Waals heterojunctions. J. Mater. Res. 2016, 31, 923–930.

    CAS  Google Scholar 

  96. Yu, P.; Lin, J. H.; Sun, L. F.; Le, Q. L.; Yu, X. C.; Gao, G. H.; Hsu, C. H.; Wu, D.; Chang, T. R.; Zeng, Q. S. et al. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv. Mater 2017, 29, 1603991.

    Google Scholar 

  97. Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano. Lett. 2016, 16, 264–269.

    CAS  Google Scholar 

  98. Li, H. L.; Liu, H. J.; Zhou, L. W.; Wu, X. P.; Pan, Y. H.; Ji, W.; Zheng, B. Y.; Zhang, Q. L.; Zhuang, X. J.; Zhu, X. L. et al. Strain-tuning atomic substitution in two-dimensional atomic crystals. ACS Nano 2018, 12, 4853–4860.

    CAS  Google Scholar 

  99. Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

    Google Scholar 

  100. Mahjouri-Samani, M.; Gresback, R.; Tian, M. K.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Eres, G.; Ivanov, I. N.; Xiao, K.; McGuire, M. A. et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 2014, 24, 6365–6371.

    CAS  Google Scholar 

  101. Li, R. P.; Cheng, Y. C.; Huang, W. Recent progress of janus 2D transition metal chalcogenides: From theory to experiments. Small 2018, 14, 1802091.

    Google Scholar 

  102. Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

    Google Scholar 

  103. Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749.

    CAS  Google Scholar 

  104. Lin, Y. C.; Liu, C. Z.; Yu, Y. L.; Zarkadoula, E.; Yoon, M.; Puretzky, A. A.; Liang, L. B.; Kong, X. R.; Gu, Y. Y.; Strasser, A. et al. Low energy implantation into transition-metal dichalcogenide monolayers to form janus structures. ACS Nano 2020, 14, 3896–3906.

    CAS  Google Scholar 

  105. Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 2015, 6, 7749.

    CAS  Google Scholar 

  106. Griffith, A. A. The phenomena of rupture and flow in solids. Philos Trans Roy Soc London Ser A Containing Papers Math Phys Character 1921, 221, 163–198.

    Google Scholar 

  107. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    CAS  Google Scholar 

  108. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    CAS  Google Scholar 

  109. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    CAS  Google Scholar 

  110. Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434.

    Google Scholar 

  111. Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866–872.

    CAS  Google Scholar 

  112. Kumar, S.; Kaczmarczyk, A.; Gerardot, B. D. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 2015, 15, 7567–7573.

    CAS  Google Scholar 

  113. Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.

    CAS  Google Scholar 

  114. Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 2015, 10, 491–496.

    CAS  Google Scholar 

  115. Jiang, J. W. Phonon bandgap engineering of strained monolayer MoS2. Nanoscale 2014, 6, 8326–8333.

    CAS  Google Scholar 

  116. Luo, W. J.; Oyedele, A. D.; Gu, Y. Y.; Li, T. S.; Wang, X. Z.; Haglund, A. V.; Mandrus, D.; Puretzky, A. A.; Xiao, K.; Liang, L. B. et al. Anisotropic phonon response of few-layer PdSe2 under uniaxial strain. Adv. Funct. Mater. 2020, in press, DOI: https://doi.org/10.1002/adfm.202003215.

  117. Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

    CAS  Google Scholar 

  118. Wilson, P. M.; Mbah, G. N.; Smith, T. G.; Schmidt, D.; Lai, R. Y.; Hofmann, T.; Sinitskii, A. Three-dimensional periodic graphene nanostructures. J. Mater. Chem. C 2014, 2, 1879–1886.

    CAS  Google Scholar 

  119. Pan, Z. W.; Lerch, S. J. L.; Xu, L.; Li, X. F.; Chuang, Y. J.; Howe, J. Y.; Mahurin, S. M.; Dai, S.; Hildebrand, M. Electronically transparent graphene replicas of diatoms: A new technique for the investigation of frustule morphology. Sci. Rep. 2015, 4, 6117.

    Google Scholar 

  120. Chen, K.; Li, C.; Shi, L. R.; Gao, T.; Song, X. J.; Bachmatiuk, A.; Zou, Z. Y.; Deng, B.; Ji, Q. Q.; Ma, D. L. et al. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nat. Commun. 2016, 7, 13440.

    CAS  Google Scholar 

  121. Liu, T.; Liu, S.; Tu, K. H.; Schmidt, H.; Chu, L. Q.; Xiang, D.; Martin, J.; Eda, G.; Ross, C. A.; Garaj, S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223–226.

    CAS  Google Scholar 

  122. Lauritsen, J. V.; Nyberg, M.; Vang, R. T.; Bollinger, M. V.; Clausen, B. S.; Topsøe, H.; Jacobsen, K. W.; Lægsgaard, E.; Nørskov, J. K.; Besenbacher, F. Chemistry of one-dimensional metallic edge states in MoS2 nanoclusters. Nanotechnology 2003, 14, 385–389.

    CAS  Google Scholar 

  123. Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739–16744.

    CAS  Google Scholar 

  124. Fei, Z. Y.; Palomaki, T.; Wu, S. F.; Zhao, W. J.; Cai, X. H.; Sun, B. S.; Nguyen, P.; Finney, J.; Xu, X. D.; Cobden, D. H. Edge conduction in monolayer WTe2. Nat. Phys. 2017, 13, 677–682.

    CAS  Google Scholar 

  125. Chakraborty, C.; Goodfellow, K. M.; Dhara, S.; Yoshimura, A.; Meunier, V.; Vamivakas, A. N. Quantum-confined stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 2017, 17, 2253–2258.

    CAS  Google Scholar 

  126. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.

    Google Scholar 

  127. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    CAS  Google Scholar 

  128. Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

    CAS  Google Scholar 

  129. Zhao, X. X.; Fu, D. Y.; Ding, Z. J.; Zhang, Y. Y.; Wan, D. Y.; Tan, S. J. R.; Chen, Z. X.; Leng, K.; Dan, J. D.; Fu, W. et al. Mo-terminated edge reconstructions in nanoporous molybdenum disulfide film. Nano Lett. 2018, 18, 482–490.

    CAS  Google Scholar 

  130. Xia, Y. P.; Wang, B.; Zhang, J. Q.; Jin, Y. J.; Tian, H.; Ho, W.; Xu, H.; Jin, C. H.; Xie, M. H. Quantum confined Tomonaga-Luttinger liquid in Mo6Se6 nanowires converted from an epitaxial MoSe2 monolayer. Nano Lett. 2020, 20, 2094–2099.

    CAS  Google Scholar 

  131. Venkataraman, L.; Hong, Y. S.; Kim, P. Electron transport in a multichannel one-dimensional conductor: Molybdenum selenide nanowires. Phys. Rev. Lett. 2006, 96, 076601.

    Google Scholar 

  132. Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    CAS  Google Scholar 

  133. Jin, C. H.; Regan, E. C.; Yan, A. M.; Utama, M. I. B.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    CAS  Google Scholar 

  134. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    CAS  Google Scholar 

  135. Kinoshita, K.; Moriya, R.; Onodera, M.; Wakafuji, Y.; Masubuchi, S.; Watanabe, K.; Taniguchi, T.; Machida, T. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 2019, 3, 22.

    Google Scholar 

  136. Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.

    CAS  Google Scholar 

  137. Suzuki, R.; Sakano, M.; Zhang, Y. J.; Akashi, R.; Morikawa, D.; Harasawa, A.; Yaji, K.; Kuroda, K.; Miyamoto, K.; Okuda, T. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 2014, 9, 611–617.

    CAS  Google Scholar 

  138. Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130–134.

    CAS  Google Scholar 

  139. Li, X. F.; Basile, L.; Huang, B.; Ma, C.; Lee, J.; Vlassiouk, I. V.; Puretzky, A. A.; Lin, M. W.; Yoon, M.; Chi, M. F. et al. van der waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene. ACS Nano 2015, 9, 8078–8088.

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. The synthesis science in this work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Yu, Y., Lin, YC. et al. Heterogeneities at multiple length scales in 2D layered materials: From localized defects and dopants to mesoscopic heterostructures. Nano Res. 14, 1625–1649 (2021). https://doi.org/10.1007/s12274-020-3047-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3047-7

Keywords

Navigation