Skip to main content
Log in

Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic water oxidation is a crucial step in water splitting, but is generally restricted by the slow kinetics. Therefore, it is necessary to develop high-performance water oxidation photocatalysts. Herein, the Fe-doped Bi2WO6 nanosheets with oxygen vacancies (OVs) were synthesized for enhanced photocatalytic water oxidation efficiency, showing a synergistic effect between Fe dopants and OVs. When a molar fraction of 2% Fe was doped into the Bi2WO6 nanosheets, the visible-light-driven photocatalytic oxygen evolution rate was increased up to 131.3 µmol·h−1·gcat−1 under ambient conditions, which was more than 3 times that of pure Bi2WO6 nanosheets. The proper doping concentration of Fe could promote the formation of OVs and at the same time modulate the band structure of catalysts, especially the position of the valence band maximum (VBM), leading to effective visible-light absorption and enhanced oxidizing ability of photogenerated holes. With ameliorated localized electron distribution, fast charge transfer channel emerged between the OVs and adjacent metal atoms, which accelerated the charge carrier transfer and promoted the separation of photoexcited electrons and holes. This work provides feasible approaches for designing efficient two-dimensional semiconductor water oxidation photocatalysts that could utilize visible-light, which will make more use of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  CAS  Google Scholar 

  2. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  CAS  Google Scholar 

  3. Lin, S.; Huang, H. W.; Ma, T. Y.; Zhang, Y. H. Photocatalytic oxygen evolution from water splitting. Adv. Sci. 2020, 8, 2002458.

    Article  CAS  Google Scholar 

  4. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting — a critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  CAS  Google Scholar 

  5. Zhang, C.; Zhu, Y. F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 2005, 17, 3537–3545.

    Article  CAS  Google Scholar 

  6. Maeda, K.; Takata, T.; Hara, M.; Saito, N.; Inoue, Y.; Kobayashi, H.; Domen, K. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286–8287.

    Article  CAS  Google Scholar 

  7. Renger, G.; Renger, T. Photosystem II: The machinery of photosynthetic water splitting. Photosynth. Res. 2008, 98, 53–80.

    Article  CAS  Google Scholar 

  8. Kamat, P. V. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 2012, 45, 1906–1915.

    Article  CAS  Google Scholar 

  9. Chen, P.; Lei, B.; Dong, X. A.; Wang, H.; Sheng, J. P.; Cui, W.; Li, J. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Rare-earth single-atom La-N charge-transfer bridge on carbon nitride for highly efficient and selective photocatalytic CO2 reduction. ACS Nano 2020, 14, 15841–15852.

    Article  CAS  Google Scholar 

  10. Ma, Z. J.; Cui, Z. T.; Lv, Y. H.; Sa, R. J.; Wu, K. C.; Li, Q. H. Three-in-one: Opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S co-doping. Int. J. Hydrogen Energy 2020, 45, 4534–4544.

    Article  CAS  Google Scholar 

  11. Xia, B. Q.; Zhang, Y. Z.; Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Single-atom photocatalysts for emerging reactions. ACS Cent. Sci. 2021, 7, 39–54.

    Article  CAS  Google Scholar 

  12. Zhang, F. J.; Oh, W. C.; Zhang, K. New insight for enhancing photocatalytic activity of MWCNT/TiO2 by decorating palladium nanoparticles as charge-transfer channel. Mater. Res. Bull. 2012, 47, 619–624.

    Article  CAS  Google Scholar 

  13. Wei, Z. D.; Zhu, Y.; Guo, W. Q.; Liu, J. Y.; Fang, W. J.; Jiang, Z.; Shangguan, W. F. Enhanced twisting degree assisted overall water splitting on a novel nano-dodecahedron BiVO4-based heterojunction. Appl. Catal. B Environ. 2020, 266, 118664.

    Article  CAS  Google Scholar 

  14. Wang, Y. J.; Wang, F. M.; He, J. Controlled fabrication and photo-catalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 2013, 5, 11291–11297.

    Article  CAS  Google Scholar 

  15. Kong, L. N.; Zhang, X. T.; Wang, C. H.; Xu, J. P.; Du, X. W.; Li, L. Ti3+ defect mediated g-C3N4/TiO2 Z-scheme system for enhanced photocatalytic redox performance. Appl. Surf. Sci. 2018, 448, 288–296.

    Article  CAS  Google Scholar 

  16. Ren, X. C.; Gao, P.; Kong, X. L.; Jiang, R.; Yang, P. P.; Chen, Y. J.; Chi, Q. Q.; Li, B. X. NiO/Ni/TiO2 nanocables with Schottky/p-n heterojunctions and the improved photocatalytic performance in water splitting under visible light. J. Colloid Interface Sci. 2018, 530, 1–8.

    Article  CAS  Google Scholar 

  17. Xie, Y. S.; Yuan, L.; Zhang, N.; Xu, Y. J. Light-tuned switching of charge transfer channel for simultaneously boosted photoactivity and stability. Appl. Catal. B Environ. 2018, 238, 19–26.

    Article  CAS  Google Scholar 

  18. Liang, C.; Niu, C. G.; Zhang, L.; Wen, X. J.; Yang, S. F.; Guo, H.; Zeng, G. M. Construction of 2D heterojunction system with enhanced photocatalytic performance: Plasmonic Bi and reduced graphene oxide co-modified Bi5O7I with high-speed charge transfer channels. J. Hazard. Mater. 2019, 361, 245–258.

    Article  CAS  Google Scholar 

  19. Ning, X. M.; Wu, Y. L.; Ma, X. F.; Zhang, Z.; Gao, R. Q.; Chen, J.; Shan, D. L.; Lu, X. Q. A novel charge transfer channel to simultaneously enhance photocatalytic water splitting activity and stability of CdS. Adv. Funct. Mater. 2019, 29, 1902992.

    Article  CAS  Google Scholar 

  20. Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

    Article  CAS  Google Scholar 

  21. Sun, Y. F.; Gao, S.; Lei, F. C.; Xiao, C.; Xie, Y. Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry. Acc. Chem. Res. 2015, 48, 3–12.

    Article  CAS  Google Scholar 

  22. Jiang, D. H.; Liu, Z. R.; Fu, L. J.; Yang, H. M. Interfacial chemical-bond-modulated charge transfer of heterostructures for improving photocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 9872–9880.

    Article  CAS  Google Scholar 

  23. Sun, Y. X.; Wang, L.; Wang, T.; Liu, X. Q.; Xu, T.; Wei, M. B.; Yang, L. L.; Li, C. X. Improved photocatalytic activity of Ni2P/NiCo-LDH composites via a Co-P bond charge transfer channel to degrade tetracycline under visible light. J. Alloys Compd. 2021, 852, 156963.

    Article  CAS  Google Scholar 

  24. Liu, C. B.; Chen, J. B.; Che, H. N.; Huang, K.; Charpentier, P. A.; Xu, W. Z.; Shi, W. D.; Dong, H. J. Construction and enhanced photocatalytic activities of a hydrogenated TiO2 nanobelt coated with CDs/MoS2 nanosheets. RSC Adv. 2017, 7, 8429–8442.

    Article  CAS  Google Scholar 

  25. Ran, J. R.; Zhang, H. P.; Qu, J. T.; Shan, J. Q.; Chen, S. M.; Yang, F.; Zheng, R. K.; Cairney, J.; Song, L.; Jing, L. Q. et al. Atomic-level insights into the edge active ReS2 ultrathin nanosheets for high-efficiency light-to-hydrogen conversion. ACS Materials Lett. 2020, 2, 1484–1494.

    Article  CAS  Google Scholar 

  26. Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.

    Article  CAS  Google Scholar 

  27. Li, Y. B.; Li, T.; Dai, X. C.; Huang, M. H.; He, Y. H.; Xiao, G. C.; Xiao, F. X. Cascade charge transfer mediated by in situ interface modulation toward solar hydrogen production. J. Mater. Chem. A 2019, 7, 8938–8951.

    Article  CAS  Google Scholar 

  28. Zeng, Z. P.; Li, T.; Li, Y. B.; Dai, X. C.; Huang, M. H.; He, Y. H.; Xiao, G. C.; Xiao, F. X. Plasmon-induced photoelectrochemical water oxidation enabled by in situ layer-by-layer construction of cascade charge transfer channel in multilayered photoanode. J. Mater. Chem. A 2018, 6, 24686–24692.

    Article  CAS  Google Scholar 

  29. Lv, J. X.; Hu, Q. S.; Cao, C. J.; Zhao, Y. P. Modulation of valence band maximum edge and photocatalytic activity of BiOX by incorporation of halides. Chemosphere 2018, 191, 427–437.

    Article  CAS  Google Scholar 

  30. Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.

    Article  CAS  Google Scholar 

  31. Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

    Article  CAS  Google Scholar 

  32. Chen, Y.; Fan, Z. X.; Zhang, Z. C.; Niu, W. X.; Li, C. L.; Yang, N. L.; Chen, B.; Zhang, H. Two-dimensional metal nanomaterials: Synthesis, properties, and applications. Chem. Rev. 2018, 118, 6409–6455.

    Article  CAS  Google Scholar 

  33. Cao, W.; Wang, J.; Ma, M. Exfoliation of two-dimensional materials: The role of entropy. J. Phys. Chem. Lett. 2019, 10, 981–986.

    Article  CAS  Google Scholar 

  34. Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

    Article  CAS  Google Scholar 

  35. Li, C. M.; Chen, G.; Sun, J. X.; Rao, J. C.; Han, Z. H.; Hu, Y. D.; Zhou, Y. S. A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 2015, 7, 25716–25724.

    Article  CAS  Google Scholar 

  36. Hu, T. X.; Li, H. P.; Zhang, R. J.; Du, N.; Hou, W. G. Thickness-determined photocatalytic performance of bismuth tungstate nanosheets. RSC Adv. 2016, 6, 31744–31750.

    Article  CAS  Google Scholar 

  37. Huang, Y. K.; Kang, S. F.; Yang, Y.; Qin, H. F.; Ni, Z. J.; Yang, S. J.; Li, X. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl. Catal. B Environ. 2016, 196, 89–99.

    Article  CAS  Google Scholar 

  38. Li, B. S.; Lai, C.; Zeng, G. M.; Qin, L.; Yi, H.; Huang, D. L.; Zhou, C. Y.; Liu, X. G.; Cheng, M.; Xu, P. et al. Facile hydrothermal synthesis of Z-scheme Bi2Fe4O9/Bi2WO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 2018, 10, 18824–18836.

    Article  CAS  Google Scholar 

  39. Yang, X.; Li, C.; Wang, J. F.; Zhang, J.; Wang, F. F.; Li, R. G.; Li, C. Graphene dispersed Bi2WO6 nanosheets with promoted interfacial charge separation for visible light photocatalysis. ChemCatChem 2019, 11, 5487–5494.

    Article  CAS  Google Scholar 

  40. Guo, M. F.; Zhou, Z. B.; Yan, S. N.; Zhou, P. F.; Miao, F.; Liang, S. J.; Wang, J. L.; Cui, X. Y. Bi2WO6-BiOCl heterostructure with enhanced photocatalytic activity for efficient degradation of oxytetracycline. Sci. Rep. 2020, 10, 18401.

    Article  CAS  Google Scholar 

  41. Zhong, X.; Wu, W. T.; Jie, H. N.; Tang, W. Y.; Chen, D. Y.; Ruan, T.; Bai, H. P. Degradation of norfloxacin by copper-doped Bi2WO6-induced sulfate radical-based visible light-Fenton reaction. RSC Adv. 2020, 10, 38024–38032.

    Article  CAS  Google Scholar 

  42. Wang, W. L.; Zhao, W. L.; Zhang, H. C.; Dou, X. C.; Shi, H. F. 2D/2D step-scheme a-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chin. J. Catal. 2021, 42, 97–106.

    Article  CAS  Google Scholar 

  43. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744.

    Article  CAS  Google Scholar 

  44. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  45. Mallika, A. N.; Ramachandra Reddy, A.; Venugopal Reddy, K. Structural and optical characterization of Zn0.95−xMg0.05CuxO nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 1528–1534.

    Article  CAS  Google Scholar 

  46. Zhang, J. K.; Yang, L. L.; Wu, X. X.; Wei, M. B.; Liu, Y. Q.; Gao, C. X.; Yang, J. H.; Ma, Y. Z. Correlation between structural change and electrical transport properties of Fe-doped chrysotile nanotubes under high pressure. J Phys. Condens. Matter 2018, 30, 144008.

    Article  Google Scholar 

  47. Etogo, A.; Liu, R.; Ren, J. B.; Qi, L. W.; Zheng, C. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Facile one-pot solvothermal preparation of Mo-doped Bi2WO6 biscuit-like microstructures for visible-light-driven photocatalytic water oxidation. J. Mater. Chem. A 2016, 4, 13242–13250.

    Article  CAS  Google Scholar 

  48. Maçzka, M.; Macalik, L.; Hermanowicz, K.; Kępiński, L.; Tomaszewski, P. Phonon properties of nanosized bismuth layered ferroelectric material-Bi2WO6. J. Raman Spectrosc. 2010, 41, 1059–1066.

    Article  CAS  Google Scholar 

  49. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

    Article  CAS  Google Scholar 

  50. Liu, D. L.; Zhang, C.; Yu, Y. F.; Shi, Y. M.; Yu, Y.; Niu, Z. Q.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613.

    Article  CAS  Google Scholar 

  51. Zhao, Y.; Zhao, Y.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

    Article  CAS  Google Scholar 

  52. Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

    Article  CAS  Google Scholar 

  53. Xiong, J.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 2018, 28, 1801983.

    Article  CAS  Google Scholar 

  54. Li, H. Y.; Wang, D. J.; Wang, P.; Fan, H. M.; Xie, T. F. Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chem.—Eur. J. 2009, 15, 12521–12527.

    Article  CAS  Google Scholar 

  55. Liu, Y.; Hu, Z. F.; Yu, J. C. Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets. Chem. Mater. 2020, 32, 1488–1494.

    Article  CAS  Google Scholar 

  56. Lv, Y. H.; Yao, W. Q.; Zong, R. L.; Zhu, Y. F. Fabrication of wide-range-visible photocatalyst Bi2WO6−x nanoplates via surface oxygen vacancies. Sci. Rep. 2016, 6, 19347.

    Article  CAS  Google Scholar 

  57. Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

    Article  CAS  Google Scholar 

  58. Zunger, A. Practical doping principles. Appl. Phys. Lett. 2003, 83, 57–59.

    Article  CAS  Google Scholar 

  59. Zhang, T.; Zhu, Z. L.; Chen, H. N.; Bai, Y.; Xiao, S.; Zheng, X. L.; Xue, Q. Z.; Yang, S. H. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: A combined experimental and theoretical study. Nanoscale 2015, 7, 2933–2940.

    Article  CAS  Google Scholar 

  60. de Jesus Silva Chaves, M.; de Oliveira Lima, G.; de Assis, M.; de Jesus Silva Mendonça, C.; Pinatti, I. M.; Gouveia, A. F.; Viana Rosa, I. L.; Longo, E.; Almeida, M. A. P.; Rodrigues dos Santos Franco, T. C. Environmental remediation properties of Bi2WO6 hierarchical nanostructure: A joint experimental and theoretical investigation. J. Solid State Chem. 2019, 274, 270–279.

    Article  CAS  Google Scholar 

  61. Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z. S.; Hansen, J. Ø.; Matthiesen, J.; Blekinge-Rasmussen, A.; Lægsgaard, E.; Hammer, B. et al. The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 2008, 320, 1755–1759.

    Article  CAS  Google Scholar 

  62. Sun, Y. J.; Wang, H.; Xing, Q.; Cui, W.; Li, J. Y.; Wu, S. J.; Sun, L. D. The pivotal effects of oxygen vacancy on Bi2MoO6: Promoted visible light photocatalytic activity and reaction mechanism. Chin. J. Catal. 2019, 40, 647–655.

    Article  CAS  Google Scholar 

  63. Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K. K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

    Article  CAS  Google Scholar 

  64. Xu, Z. M.; Deng, X. M.; Chen, Y.; Wen, J. Y.; Shi, L. Y.; Bian, Z. F. Engineering a rapid charge transfer pathway for enhanced photocatalytic removal efficiency of hexavalent chromium over C3N4/NH2-UIO-66 compounds. Sol. RRL 2021, 5, 2000416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2017YFA0207301), the National Natural Science Foundation of China (Nos. 21622107, 11621063, U1532265, and 21890750), the Youth Innovation Promotion Association CAS (No. 2016392), the Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH011), and the Major Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2017FXZY003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Xiao or Yi Xie.

Electronic supplementary material

12274_2021_3605_MOESM1_ESM.pdf

Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Yang, L., Li, H. et al. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Res. 14, 3365–3371 (2021). https://doi.org/10.1007/s12274-021-3605-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3605-7

Keywords

Navigation