Skip to main content
Log in

Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Broad absorption spectra with efficient generation and separation of available charge carriers are indispensable requirements for promising semiconductor-based photocatalysts to achieve the ultimate goal of solar-to-fuel conversion. Here, Cu3−xSnS4 (x = 0−0.8) with copper vacancies have been prepared and fabricated via solvothermal process. The obtained copper vacancy materials have extended light absorption from ultraviolet to near-infrared-II region for its significant plasmonic effects. Time-resolved photoluminescence shows that the vacancies can simultaneously optimize charge carrier dynamics to boost the generation of long-lived active electrons for photocatalytic reduction. Density functional theory calculations and electrochemical characterizations further revealed that copper vacancies in Cu3−xSnS4 tend to enhance hydrogen’s adsorption energy with an obvious decrease in its H2 evolution reaction (HER) overpotential. Furthermore, without any loadings, the H2 production rate was measured to be 9.5 mmol·h−1·g−1. The apparent quantum yield was measured to be 27% for wavelength λ > 380 nm. The solar energy conversion efficiency was measured to be 6.5% under visible-near infrared (vis-NIR) (λ > 420 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  CAS  Google Scholar 

  2. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  CAS  Google Scholar 

  3. Wang, X. T.; Liow, C.; Bisht, A.; Liu, X. F.; Sum, T. C.; Chen, X. D.; Li, S. Z. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion. Adv. Mater. 2015, 27, 2207–2214.

    Article  CAS  Google Scholar 

  4. Zhang, Z. Y.; Huang, Y. Z.; Liu, K. C.; Guo, L. J.; Yuan, Q.; Dong, B. Multichannel-improved charge-carrier dynamics in well-designed hetero-nanostructural plasmonic photocatalysts toward highly efficient solar-to-fuels conversion. Adv. Mater. 2015, 27, 5906–5914.

    Article  CAS  Google Scholar 

  5. Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem., Int. Ed. 2016, 55, 6396–6400.

    Article  CAS  Google Scholar 

  6. Kawashima, K.; Hojamberdiev, M.; Wagata, H.; Yubuta, K.; Domen, K.; Teshima, K. Protonated oxide, nitrided, and reoxidized K2La2Ti3O10 crystals: Visible-light-induced photocatalytic water oxidation and fabrication of their nanosheets. ACS Sustainable Chem. Eng. 2017, 5, 232–240.

    Article  CAS  Google Scholar 

  7. Thaweesak, S.; Lyu, M.; Peerakiatkhajohn, P.; Butburee, T.; Luo, B.; Chen, H. J.; Wang, L. Z. Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Appl. Catal. B 2017, 202, 184–190.

    Article  CAS  Google Scholar 

  8. Iwase, A.; Kato, H.; Kudo, A. The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO3 powder. ChemSusChem 2009, 2, 873–877.

    Article  CAS  Google Scholar 

  9. Yang, Y. Q.; Sun, C. H.; Wang, L. Z.; Liu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H. M. Constructing a metallic/semiconducting TaB2/Ta2O5 core/shell heterostructure for photocatalytic hydrogen evolution. Adv. Energy Mater. 2014, 4, 1400057.

    Article  CAS  Google Scholar 

  10. Kim, H. N.; Kim, T. W.; Kim, I. Y.; Hwang, S. J. Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production: Porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv. Funct. Mater. 2011, 21, 3111–3118.

    Article  CAS  Google Scholar 

  11. Niezgoda, J. S.; Yap, E.; Keene, J. D.; McBride, J. R.; Rosenthal, S. J. Plasmonic CuxInyS2 quantum dots make better photovoltaics than their nonplasmonic counterparts. Nano Lett. 2014, 14, 3262–3269.

    Article  CAS  Google Scholar 

  12. Kale, B. B.; Baeg, J. O.; Lee, S. M.; Chang, H.; Moon, S. J.; Lee, C. W. CdIn2S4 nanotubes and “Marigold” nanostructures: A visible-light photocatalyst. Adv. Funct. Mater. 2006, 16, 1349–1354.

    Article  CAS  Google Scholar 

  13. Bhirud, A.; Chaudhari, N.; Nikam, L.; Sonawane, R.; Patil, K.; Baeg, J. O.; Kale, B. Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int. J. Hydrogen Energy 2011, 36, 11628–11639.

    Article  CAS  Google Scholar 

  14. Regulacio, M. D.; Han, M. Y. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc. Chem. Res. 2016, 49, 511–519.

    Article  CAS  Google Scholar 

  15. Ng, B. J.; Putri, L. K.; Kong, X. Y.; Teh, Y. W.; Pasbakhsh, P.; Chai, S. P. Z-scheme photocatalytic systems for solar water splitting. Adv. Sci. 2020, 7, 1903171.

    Article  CAS  Google Scholar 

  16. Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

    Article  CAS  Google Scholar 

  17. Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solidstate Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

    Article  CAS  Google Scholar 

  18. Yun, H. J.; Lee, H.; Kim, N. D.; Lee, D. M.; Yu, S.; Yi, J. A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 2011, 5, 4084–4090.

    Article  CAS  Google Scholar 

  19. Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890.

    Article  CAS  Google Scholar 

  20. Li, X.; Yu, J. X.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534.

    Article  CAS  Google Scholar 

  21. Jin, J.; Yu, J. G.; Guo, D. P.; Cui, C.; Ho, W. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 2015, 11, 5262–5271.

    Article  CAS  Google Scholar 

  22. Xu, D. F.; Cheng, B.; Cao, S. W.; Yu, J. G. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal. B 2015, 164, 380–388.

    Article  CAS  Google Scholar 

  23. Li, H. T.; Liu, R. H.; Liu, Y.; Huang, H.; Yu, H.; Ming, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J. Mater. Chem. 2012, 22, 17470–17475.

    Article  CAS  Google Scholar 

  24. Nishijima, Y.; Ueno, K.; Kotake, Y.; Murakoshi, K.; Inoue, H.; Misawa, H. Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 2012, 3, 1248–1252.

    Article  CAS  Google Scholar 

  25. Wang, G.; Huang, B. B.; Ma, X. C.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H. Cu2(OH)PO4, a near-infrared-activated photocatalyst. Angew. Chem., In. Ed. 2013, 52, 4810–4813.

    Article  CAS  Google Scholar 

  26. Manwar, N. R.; Chilkalwar, A. A.; Nanda, K. K.; Chaudhary, Y. S.; Subrt, J.; Rayalu, S. S.; Labhsetwar, N. K. Ceria supported Pt/PtO-nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation. ACS Sustainable Chem. Eng. 2016, 4, 2323–2332.

    Article  CAS  Google Scholar 

  27. Kuo, T. R.; Liao, H. J.; Chen, Y. T.; Wei, C. Y.; Chang, C. C.; Chen, Y. C.; Chang, Y. H.; Lin, J. C.; Lee, Y. C.; Wen, C. Y. et al. Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 2018, 20, 1640–1647.

    Article  CAS  Google Scholar 

  28. Scotognella, F.; Della Valle, G.; Srimath Kandada, A. R.; Dorfs, D.; Zavelani-Rossi, M.; Conforti, M.; Miszta, K.; Comin, A.; Korobchevskaya, K.; Lanzani, G. et al. Plasmon dynamics in colloidal Cu2−x Se nanocrystals. Nano Lett. 2011, 11, 4711–4717.

    Article  CAS  Google Scholar 

  29. Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575–10636.

    Article  CAS  Google Scholar 

  30. Kriegel, I.; Jiang, C. Y.; Rodríguez-Fernández, J.; Schaller, R. D.; Talapin, D. V.; Da Como, E.; Feldmann, J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 1583–1590.

    Article  CAS  Google Scholar 

  31. Wang, X. T.; Liow, C.; Qi, D. P.; Zhu, B. W.; Leow, W. R.; Wang, H.; Xue, C.; Chen, X. D.; Li, S. Z. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS-Au nanorod arrays. Adv. Mater. 2014, 26, 3506–3512.

    Article  CAS  Google Scholar 

  32. Cai, X. Y.; Zhu, M. S.; Elbanna, O. A.; Fujitsuka, M.; Kim, S.; Mao, L.; Zhang, J. Y.; Majima, T. Au nanorod photosensitized La2Ti2O7 nanosteps: Successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal. 2018, 8, 122–131.

    Article  CAS  Google Scholar 

  33. Sousa-Castillo, A.; Comesaña-Hermo, M.; Rodríguez-González, B.; Pérez-Lorenzo, M. S.; Wang, Z. M.; Kong, X. T.; Govorov, A. O.; Correa-Duarte, M. A. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO2 nanoarchitectures. J. Phys. Chem. C 2016, 120, 11690–11699.

    Article  CAS  Google Scholar 

  34. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    Article  CAS  Google Scholar 

  35. Kharkwal, A.; Sharma, S. N.; Jain, K.; Singh, A. K. A solvothermal approach for the size-, shape- and phase-controlled synthesis and properties of CuInS2. Mater. Chem. Phys. 2014, 144, 252–262.

    Article  CAS  Google Scholar 

  36. Chen, F. K.; Zai, J. T.; Xu, M.; Qian, X. F. 3D-hierarchical Cu3SnS4 flowerlike microspheres: Controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. J. Mater. Chem. A 2013, 1, 4316–4323.

    Article  CAS  Google Scholar 

  37. Auyoong, Y. L.; Yap, P. L.; Huang, X.; Abd Hamid, S. B. Optimization of reaction parameters in hydrothermal synthesis: A strategy towards the formation of CuS hexagonal plates. Chem. Cen. J. 2013, 7, 67.

    Article  CAS  Google Scholar 

  38. Wang, Y.; Liu, F. Y.; Ji, Y.; Yang, M.; Liu, W.; Wang, W.; Sun, Q. S.; Zhang, Z. Q.; Zhao, X. D.; Liu, X. Y. Controllable synthesis of various kinds of copper sulfides (CuS, Cu7S4, Cu9S5) for high-performance supercapacitors. Dalton Trans. 2015, 44, 10431–10437.

    Article  CAS  Google Scholar 

  39. Cheng, Z. G.; Wang, S. Z.; Wang, Q.; Geng, B. Y. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst. CrystEngComm 2010, 12, 144–149.

    Article  CAS  Google Scholar 

  40. Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater. 2017, 29, 1604797.

    Article  CAS  Google Scholar 

  41. Liu, Q.; Jiang, L.; Guo, L. Precursor-directed self-assembly of porous ZnO nanosheets as high-performance surface-enhanced Raman scattering substrate. Small 2014, 10, 48–51.

    Article  CAS  Google Scholar 

  42. Kanai, A.; Araki, H.; Takeuchi, A.; Katagiri, H. Annealing temperature dependence of photovoltaic properties of solar cells containing Cu2SnS3 thin films produced by co-evaporation. Phys. Status Solidi B 2015, 252, 1239–1243.

    Article  CAS  Google Scholar 

  43. Tao, F. J.; Zhang, Y. L.; Yin, K.; Cao, S. J.; Chang, X. T.; Lei, Y. H.; Wang, D. S.; Fan, R. H.; Dong, L. H.; Yin, Y. S. et al. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation. ACS Appl. Mater. Interfaces 2018, 10, 35154–35163.

    Article  CAS  Google Scholar 

  44. van Duren, S.; Ren, Y.; Scragg, J.; Just, J.; Unold, T. In situ monitoring of Cu2ZnSnS4 absorber formation with Raman spectroscopy during Mo/Cu2SnS3/ZnS thin-film stack annealing. IEEE J. Photovolt. 2017, 7, 906–912.

    Article  Google Scholar 

  45. Padam, G. K.; Malhotra, G. L.; Gupta, S. K. Study of intrinsic defects in vacuum/air annealed CuInSe2. Solar Energy Mater. 1991, 22, 303–318.

    Article  CAS  Google Scholar 

  46. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

    Article  CAS  Google Scholar 

  47. Choudhari, N. J.; Raviprakash, Y.; Bellarmine, F.; Rao, M. R.; Pinto, R. Investigation on the sulfurization temperature dependent phase and defect formation of sequentially evaporated Cu-rich CZTS thin films. Solar Energy 2020, 201, 348–361.

    Article  CAS  Google Scholar 

  48. Xu, M.; Ye, T. N.; Dai, F.; Yang, J. D.; Shen, J. M.; He, Q. Q.; Chen, W. L.; Liang, N.; Zai, J. T.; Qian, X. F. Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. ChemSusChem 2015, 8, 1218–1225.

    Article  CAS  Google Scholar 

  49. Zhang, Z. Y.; Huang, J. D.; Fang, Y. R.; Zhang, M. Y.; Liu, K. C.; Dong, B. A nonmetal plasmonic Z-scheme photocatalyst with UV-to NIR-driven photocatalytic protons reduction. Adv. Mater. 2017, 29, 1606688.

    Article  CAS  Google Scholar 

  50. Yan, C.; Huang, J. J.; Sun, K. W.; Johnston, S.; Zhang, Y. F.; Sun, H.; Pu, A. B.; He, M. R.; Liu, F. Y.; Eder, K. et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 2018, 3, 764–772.

    Article  CAS  Google Scholar 

  51. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578.

    Article  CAS  Google Scholar 

  52. Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Science and Technology Commission of Shanghai Municipality (Nos. 19JC1412600, 20520741400, and 18230743400) and the National Natural Science Foundation of China (Nos. 21771124 and 21671134).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiling Xin, Jiantao Zai or Xuefeng Qian.

Electronic supplementary material

12274_2021_3604_MOESM1_ESM.pdf

Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Tsega, T.T., Cao, Y. et al. Copper vacancy activated plasmonic Cu3−xSnS4 for highly efficient photocatalytic hydrogen generation: Broad solar absorption, efficient charge separation and decreased HER overpotential. Nano Res. 14, 3358–3364 (2021). https://doi.org/10.1007/s12274-021-3604-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3604-8

Keywords

Navigation