Skip to main content

Advertisement

Log in

Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Inexpensive, safe, and efficient conversion of solar energy to hydrogen from water splitting requires the development of effective and durable photocatalysts. Cu2ZnSnS4 (CZTS), the emerging quaternary chalcogenide material for solar energy conversion, possesses many advantages, such as narrow direct band gap (1.5 eV), non-toxic, earth-abundance, and low melting point. Currently, CZTS-based photocatalysts have been extensively investigated for their application as an active photocatalyst in hydrogen evolution from water splitting, while the performance is still highly needed to be improved for the practical applications. In this review, first, the crystal and band structure properties of CZTS are briefly introduced, and afterward, the basic principle of photocatalytic hydrogen evolution from water splitting is discussed. Subsequently, the performance and status of bare CZTS, the combination of CZTS and co-catalysts, and CZTS-based heterojunction photocatalysts for hydrogen evolution are reviewed and discussed in detail. Finally, the issues and challenges currently encountered in the application of CZTS and their possible solutions for developing advanced CZTS photocatalysts are provided.

Graphical abstract

摘要

实现低成本、安全和高效的太阳能光解水制氢, 关键在于开发高效稳定的半导体光催化剂。铜锌锡硫 (CZTS) 是一种新兴的四元硫族化合物半导体材料, 具有直接带隙 (1.5 eV), 低毒, 元素储量丰富和低熔点等优点。目前, 基于CZTS的光催化剂在光解水制氢中的应用已被广泛研究。尽管已取得了良好的制氢效率, 但要实现商业化应用, 其性能仍有待进一步提高。本文首先简要介绍了CZTS的晶体和能带结构等半导体特性, 然后讨论了光解水制氢的基本原理; 其次, 对CZTS, CZTS负载助催化剂以及基于CZTS的异质结光催化制氢的性能和现状进行了总结; 最后, 指出了目前研究阶段CZTS光催化剂尚未解决的科学问题以及可能的解决方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Regulacio MD, Han MY. Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc Chem Res. 2016;49(3):511.

    Article  CAS  Google Scholar 

  2. Miller E. Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int J Hydrogen Energy. 2003;28(6):615.

    Article  CAS  Google Scholar 

  3. Yu X, An X, Shavel A, Ibáñez M, Cabot A. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1-xGaxS2 nanocrystals. J Mater Chem A. 2014;2(31):12317.

    Article  CAS  Google Scholar 

  4. Takagi F, Kageshima Y, Teshima K, Domen K, Nishikiori H. Enhanced photoelectrochemical performance from particulate ZnSe:Cu(In, Ga)Se2 photocathodes during solar hydrogen production via particle size control. Sustain Energy Fuels. 2021;5(2):412.

    Article  CAS  Google Scholar 

  5. Lee TD, Ebong AU. A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev. 2017;70:1286.

    Article  CAS  Google Scholar 

  6. Qu JJ, Zhang LR, Song XM, Zhang YZ, Wang H, Yan H. Research progress of copper indium gallium selenide thin film solar cells. Chin J Rare Met. 2020;44(3):313.

    Google Scholar 

  7. Cao Y, Denny MS Jr, Caspar JV, Farneth WE, Guo Q, Ionkin AS, Johnson LK, Lu M, Malajovich I, Radu D, Rosenfeld HD, Choudhury KR, Wu W. High-efficiency solution-processed Cu2ZnSn(S, Se)4 thin-film solar cells prepared from binary and ternary nanoparticles. J Am Chem Soc. 2012;134(38):15644.

    Article  CAS  Google Scholar 

  8. He J, Lu X, Li X, Dong Y, Yue F, Chen Y, Sun L, Yang P, Chu J. Compositional dependence of photovoltaic properties of Cu2ZnSnSe4 thin film solar cell: experiment and simulation. Sol Energy. 2018;159:572.

    Article  CAS  Google Scholar 

  9. Liu Y, Chen C, Zhou Y, Kondrotas R, Tang J. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells. J Mater Chem C. 2019;7(36):11068.

    Article  CAS  Google Scholar 

  10. Chen S, Walsh A, Gong XG, Wei SH. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater. 2013;25(11):1522.

    Article  CAS  Google Scholar 

  11. Su Z, Sun K, Han Z, Cui H, Liu F, Lai Y, Li J, Hao X, Liu Y, Green MA. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol-gel route. J Mater Chem A. 2014;2(2):500.

    Article  CAS  Google Scholar 

  12. Zhuk S, Kushwaha A, Wong TKS, Masudy-Panah S, Smirnov A, Dalapati GK. Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance. Sol Energy Mater Sol Cells. 2017;171:239.

    Article  CAS  Google Scholar 

  13. Khalate SA, Kate RS, Deokate RJ. A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: a focus towards efficiency. Sol Energy. 2018;169:616.

    Article  CAS  Google Scholar 

  14. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater. 2014;4(7):1301465.

    Article  CAS  Google Scholar 

  15. Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 57). Prog Photovolt. 2020;29(1):3.

    Article  Google Scholar 

  16. Liu Y, Yang B, Zhang M, Xia B, Chen C, Liu X, Zhong J, Xiao Z, Tang J. Bournonite CuPbSbS3: an electronically-3D, defect-tolerant, and solution-processable semiconductor for efficient solar cells. Nano Energy. 2020;71:104574.

    Article  CAS  Google Scholar 

  17. Yan C, Liu F, Sun K, Song N, Stride JA, Zhou F, Hao X, Green M, Cells S. Boosting the efficiency of pure sulfide CZTS solar cells using the In/Cd-based hybrid buffers. Sol Energy Mater Sol Cells. 2016;144:700.

    Article  CAS  Google Scholar 

  18. Yamaguchi M, Lee KH, Araki K, Kojima N, Yamada H, Katsumata Y. Analysis for efficiency potential of high-efficiency and next-generation solar cells. Prog Photovolt. 2018;26(8):543.

    Article  CAS  Google Scholar 

  19. Xu P, Chen S, Huang B, Xiang HJ, Gong XG, Wei SH. Stability and electronic structure of Cu2ZnSnS4 surfaces: first-principles study. Phys Rev B. 2013;88(4):045427.

    Article  CAS  Google Scholar 

  20. Riha SC, Fredrick SJ, Sambur JB, Liu Y, Prieto AL, Parkinson BA. Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photocathodes. ACS Appl Mater Interfaces. 2011;3(1):58.

    Article  CAS  Google Scholar 

  21. Jiang F, Gunawan Harada T, Kuang Y, Minegishi T, Domen K, Ikeda S. Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J Am Chem Soc. 2015;137(42):13691.

    Article  CAS  Google Scholar 

  22. Zhu L, Qiang YH, Zhao YL, Gu XQ. Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl Surf Sci. 2014;292:55.

    Article  CAS  Google Scholar 

  23. Ma G, Minegishi T, Yokoyama D, Kubota J, Domen K. Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating. Chem Phys Lett. 2011;501(4–6):619.

    Article  CAS  Google Scholar 

  24. Guijarro N, Prevot MS, Sivula K. Enhancing the charge separation in nanocrystalline Cu2ZnSnS4 photocathodes for photoelectrochemical application: the role of surface modifications. J Phys Chem Lett. 2014;5(21):3902.

    Article  CAS  Google Scholar 

  25. Xu Z, Guan Z, Yang J, Li Q. Band positions and photoelectrochemical properties of solution-processed silver-substituted Cu2ZnSnS4 photocathode. ACS Appl Energy Mater. 2019;2(4):2779.

    Article  CAS  Google Scholar 

  26. Yang W, Oh Y, Kim J, Jeong MJ, Park JH, Moon J. Molecular chemistry-controlled hybrid ink-derived efficient Cu2ZnSnS4 photocathodes for photoelectrochemical water splitting. ACS Energy Lett. 2016;1(6):1127.

    Article  CAS  Google Scholar 

  27. Zheng H, Liu Y. Photocatalytic H2 evolution of selective phase CZTS synthesized by ultrasonic spray pyrolysis method. J Mater Sci: Mater Electron. 2021;32(4):4125.

    CAS  Google Scholar 

  28. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37.

    Article  CAS  Google Scholar 

  29. Wang CY, Yang CH, Zhang ZC. Unraveling molecular-level mechanisms of reactive facet of carbon nitride single crystals photocatalyzing overall water splitting. Rare Met. 2020;39(12):1353.

    Article  CAS  Google Scholar 

  30. Yu F, Xie Y, Wang L, Yang N, Meng X, Wang X, Tian XL, Yang X. Platinum supported on multifunctional titanium cobalt oxide nanosheets assembles for efficient oxygen reduction reaction. Electrochim Acta. 2018;265:364.

    Article  CAS  Google Scholar 

  31. Yang X, Wang D. Photocatalysis: from fundamental principles to materials and applications. ACS Appl Energy Mater. 2018;1(12):6657.

    Article  CAS  Google Scholar 

  32. Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN. Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J Mater Res. 2011;25(1):3.

    Article  CAS  Google Scholar 

  33. Shin D, Saparov B, Mitzi DB. Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv Energy Mater. 2017;7(11):1602366.

    Article  CAS  Google Scholar 

  34. Shi JW, Ma D, Zou Y, Fan Z, Shi J, Cheng L, Ji X, Niu C. Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution. J Power Sources. 2018;379:249.

    Article  CAS  Google Scholar 

  35. Si Y, Cao S, Wu Z, Ji Y, Mi Y, Wu X, Liu X, Piao L. The effect of directed photogenerated carrier separation on photocatalytic hydrogen production. Nano Energy. 2017;41:488.

    Article  CAS  Google Scholar 

  36. Hunge YM, Yadav AA, Liu S, Mathe VL. Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason Sonochem. 2019;56:284.

    Article  CAS  Google Scholar 

  37. Zhao Z, Ma C, Cao Y, Yi J, He X, Qiu J. Electronic structure and optical properties of wurtzite-kesterite Cu2ZnSnS4. Phys Lett A. 2013;377(5):417.

    Article  CAS  Google Scholar 

  38. Zhang R, Wen X, Xu F, Zhang Q, Sun L. A density functional theory study of the Cu2ZnSnS4 monolayer as a photo-electrointegrated catalyst for water splitting and hydrogen evolution. J Phy Chem C. 2020;124(22):11922.

    Article  CAS  Google Scholar 

  39. Hwang HJ, Zeng C, Pan C, Dexter M, Malhotra R, Chang C. Tuning electronic and photocatalytic properties in pulsed light synthesis of Cu2ZnSnS4 films from CuS-ZnS-SnS nanoparticles. Mater Res Bull. 2020;122:110645.

    Article  CAS  Google Scholar 

  40. Li J, Yuan ZK, Chen S, Gong XG, Wei SH. Effective and noneffective recombination center defects in Cu2ZnSnS4: significant difference in carrier capture cross sections. Chem Mater. 2019;31(3):826.

    Article  CAS  Google Scholar 

  41. Yoshida T, Yamaguchi A, Umezawa N, Miyauchi M. Photocatalytic CO2 reduction using a pristine Cu2ZnSnS4 film electrode under visible light irradiation. J Phys Chem C. 2018;122(38):21695.

    Article  CAS  Google Scholar 

  42. Schroeder DJ, Hernandez JL, Berry GD, Rockett AA. Hole transport and doping states in epitaxial CuIn1xGaxSe2. J Appl Phys. 1998;83(3):1519.

    Article  CAS  Google Scholar 

  43. Ohnesorge B, Weigand R, Bacher G, Forchel A, Riedl W, Karg FH. Minority-carrier lifetime and efficiency of Cu(In, Ga)Se2 solar cells. Appl Phys Lett. 1998;73(9):1224.

    Article  CAS  Google Scholar 

  44. Brown G, Faifer V, Pudov A, Anikeev S, Bykov E, Contreras M, Wu J. Determination of the minority carrier diffusion length in compositionally graded Cu(In, Ga)Se2 solar cells using electron beam induced current. Appl Phys Lett. 2010;96(2):022104.

    Article  CAS  Google Scholar 

  45. Alam KM, Jensen CE, Kumar P, Hooper RW, Bernard GM, Patidar A, Manuel AP, Amer N, Palmgren A, Purschke DN, Chaulagain N, Garcia J, Kirwin PS, Shoute LCT, Cui K, Gusarov S, Kobryn AE, Michaelis VK, Hegmann FA, Shankar K. Photocatalytic mechanism control and study of carrier dynamics in CdS@C3N5 core-shell nanowires. ACS Appl Mater Interfaces. 2021;13(40):47418.

    Article  CAS  Google Scholar 

  46. Li H, Kam C, Lam Y, Ji W. Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm. Opt Commun. 2001;190(1–6):351.

    Article  CAS  Google Scholar 

  47. Mora S, Romeo N, Tarricone LJ. Diffusion length measurements in CdS and CdSe Schottky barrier junctions. Nuovo Cimento B. 1980;60(1):97.

    Article  Google Scholar 

  48. Perera MM, Lin MW, Chuang HJ, Chamlagain BP, Wang C, Tan X, Cheng MMC, Tománek D, Zhou Z. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano. 2013;7(5):4449.

    Article  CAS  Google Scholar 

  49. Zhang Y, Yang X, Wang Y, Zhang P, Liu D, Li Y, Jin Z, Mamba BB, Kuvarega AT, Gui J. Insight into l-cysteine-assisted growth of Cu2S nanoparticles on exfoliated MoS2 nanosheets for effective photoreduction removal of Cr(VI). Appl Surf Sci. 2020;518:146191.

    Article  CAS  Google Scholar 

  50. Kim YC, Nguyen VT, Lee S, Park JY, Ahn YH. Evaluation of transport parameters in MoS2/graphene junction devices fabricated by chemical vapor deposition. ACS Appl Mater Interfaces. 2018;10(6):5771.

    Article  CAS  Google Scholar 

  51. Nurhafiza K, Chelvanathan P, Sobayel K, Munna FT, Abdullah H, Ibrahim MA, Techato K, Sopian K, Amin N, Akhtaruzzaman M. Effect of Cd2+ molar concentration in CdxZn(1–x)S thin film by chemical bath deposition technique using alternative sulfur precursor. ECS J Solid State Sci Technol. 2021;10(2):025009.

    Article  CAS  Google Scholar 

  52. Huang HB, Fang ZB, Yu K, Lü J, Cao R. Visible-light-driven photocatalytic H2 evolution over CdZnS nanocrystal solid solutions: interplay of twin structures, sulfur vacancies and sacrificial agents. J Mater Chem A. 2020;8(7):3882.

    Article  CAS  Google Scholar 

  53. Datta J, Das M, Dey A, Halder S, Sil S, Ray PP. Network analysis of semiconducting Zn1xCdxS based photosensitive device using impedance spectroscopy and current-voltage measurement. Appl Surf Sci. 2017;420:566.

    Article  CAS  Google Scholar 

  54. Nugraha MI, Yarali E, Firdaus Y, Lin Y, El-Labban A, Gedda M, Lidorikis E, Yengel E, Faber H, Anthopoulos TD. Rapid photonic processing of high-electron-mobility PbS colloidal quantum dot transistors. ACS Appl Mater Interfaces. 2020;12(28):31591.

    Article  CAS  Google Scholar 

  55. Maulu A, Navarro-Arenas J, Rodriguez-Canto PJ, Sanchez-Royo JF, Abargues R, Suarez I, Martinez-Pastor JP. Charge transport in trap-sensitized infrared PbS quantum-dot-based photoconductors: pros and cons. Nanomaterials (Basel). 2018;8(9):677.

    Article  CAS  Google Scholar 

  56. Speirs MJ, Dirin DN, Abdu-Aguye M, Balazs DM, Kovalenko MV, Loi MA. Temperature dependent behaviour of lead sulfide quantum dot solar cells and films. Energy Environ Sci. 2016;9(9):2916.

    Article  CAS  Google Scholar 

  57. He Y, Zhang X, Liu Y, Liu H, Zhang Y, Li G, Wang Z, Lin Y, Wang H, Tao H. The relationship between carrier mobility and bicrystalline grains boundary of rutile TiO2 film. Mod Phys Lett B. 2019;33(16):1950176.

    Article  CAS  Google Scholar 

  58. Zhou Y, Ding Q, Wang Y, OuYang X, Liu L, Li J, Wang B. Carrier transfer and capture kinetics of the TiO2/Ag2V4O11 photocatalyst. Nanomaterials. 2020;10(5):828.

    Article  CAS  Google Scholar 

  59. Park JD, Son BH, Park JK, Kim SY, Park JY, Lee S, Ahn YH. Diffusion length in nanoporous TiO2 films under above-band-gap illumination. AIP Adv. 2014;4(6):067106.

    Article  CAS  Google Scholar 

  60. Yokoyama D, Minegishi T, Jimbo K, Hisatomi T, Ma G, Katayama M, Kubota J, Katagiri H, Domen K. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl Phys Express. 2010;3(10):101202.

    Article  CAS  Google Scholar 

  61. Wang L, Wang W, Sun S. A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution. J Mater Chem. 2012;22(14):6553.

    Article  CAS  Google Scholar 

  62. Chang ZX, Chong RF, Meng YN, Zhou WH, Kou DX, Zhou ZJ, Wu SX. High temperature recrystallization of kersterite Cu2ZnSnS4 towards enhanced photocatalytic H2 evolution. Int J Hydrogen Energy. 2015;40(39):13456.

    Article  CAS  Google Scholar 

  63. Hao R, Wang G, Jiang C, Tang H, Xu Q. In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci. 2017;411:400.

    Article  CAS  Google Scholar 

  64. Feng D, Cheng Y, He J, Zheng L, Shao D, Wang W, Wang W, Lu F, Dong H, Liu H, Zheng R, Liu H. Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process. Carbon. 2017;125:454.

    Article  CAS  Google Scholar 

  65. Wu X, Chen F, Wang X, Yu H. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance. Appl Surf Sci. 2018;427:645.

    Article  CAS  Google Scholar 

  66. Wang J, Zeng X, Zhao Y, Zhang W. Preparation and photocatalytic properties of Cu2ZnSnS4 for H2 production. Mater Res Express. 2020;7(9):095902.

    Article  CAS  Google Scholar 

  67. Hosseinpour-Mashkani SM, Maddahfar M, Sobhani-Nasab A. Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J Electron Mater. 2016;45(7):3612.

    Article  CAS  Google Scholar 

  68. Zhu M, Chen P, Liu M. Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano. 2011;5(6):4529.

    Article  CAS  Google Scholar 

  69. Liu Q, Guo Y, Chen Z, Zhang Z, Fang X. Constructing a novel ternary Fe(III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl Catal B. 2016;183:231.

    Article  CAS  Google Scholar 

  70. Chang ZX, Zhou WH, Kou DX, Zhou ZJ, Wu SX. Phase-dependent photocatalytic H2 evolution of copper zinc tin sulfide under visible light. Chem Commun (Cambridge, U K). 2014;50(84):12726.

    Article  CAS  Google Scholar 

  71. Li P, Ouyang S, Xi G, Kako T, Ye J. The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J Phys Chem C. 2012;116(14):7621.

    Article  CAS  Google Scholar 

  72. Kuo TR, Liao HJ, Chen YT, Wei CY, Chang CC, Chen YC, Chang YH, Lin JC, Lee YC, Wen CY, Li SS, Lin KH, Wang DY. Extended visible to near-infrared harvesting of earth-abundant FeS2–TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 2018;20(7):1640.

    Article  CAS  Google Scholar 

  73. Fang Z, Weng S, Ye X, Feng W, Zheng Z, Lu M, Lin S, Fu X, Liu P. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl Mater Interfaces. 2015;7(25):13915.

    Article  CAS  Google Scholar 

  74. Zheng L, Xu Y, Song Y, Wu C, Zhang M, Xie YJ. Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorg Chem. 2009;48(9):4003.

    Article  CAS  Google Scholar 

  75. Zhang LJ, Xie TF, Wang DJ, Li S, Wang LL, Chen LP, Lu YC. Noble-metal-free CuS/CdS composites for photocatalytic H2 evolution and its photogenerated charge transfer properties. Int J Hydrogen Energy. 2013;38(27):11811.

    Article  CAS  Google Scholar 

  76. Li K, Chai B, Peng T, Mao J, Zan L. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light. ACS Catal. 2013;3(2):170.

    Article  CAS  Google Scholar 

  77. Wei N, Wu Y, Wang M, Sun W, Li Z, Ding L, Cui H. Construction of noble-metal-free TiO2 nanobelt/ZnIn2S4 nanosheet heterojunction nanocomposite for highly efficient photocatalytic hydrogen evolution. Nanotechnology. 2019;30(4):045701.

    Article  CAS  Google Scholar 

  78. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK, Xue C, Hu X, Pantelides ST, Zhou W, Liu Z. MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv Energy Mater. 2016;6(14):1600464.

    Article  CAS  Google Scholar 

  79. Subramanian V, Wolf EE, Kamat PV. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc. 2004;126(15):4943.

    Article  CAS  Google Scholar 

  80. Deng Y, Luo J, Chi B, Tang H, Li J, Qiao X, Shen Y, Yang Y, Jia C, Rao P, Liao S, Tian X. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv Energy Mater. 2021;11(37):2101222.

    Article  CAS  Google Scholar 

  81. Nan H, Su YQ, Tang C, Cao R, Li D, Yu J, Liu Q, Deng Y, Tian X. Engineering the electronic and strained interface for high activity of PdMcore@Pt-monolayer electrocatalysts for oxygen reduction reaction. Sci Bull. 2020;65(16):1396.

    Article  CAS  Google Scholar 

  82. Wu Z, Su YQ, Hensen EJM, Tian X, You C, Xu Q. Highly stable Pt3Ni nanowires tailored with trace Au for the oxygen reduction reaction. J Mater Chem A. 2019;7(46):26402.

    Article  CAS  Google Scholar 

  83. Wu Z, Dang D, Tian X. Designing robust support for Pt alloy nanoframes with durable oxygen reduction reaction activity. ACS Appl Mater Interfaces. 2019;11(9):9117.

    Article  CAS  Google Scholar 

  84. Liu F, Yang X, Dang D, Tian X. Engineering of hierarchical and three-dimensional architectures constructed by titanium nitride nanowire assemblies for efficient electrocatalysis. ChemElectroChem. 2019;6(8):2208.

    Article  CAS  Google Scholar 

  85. Leng L, Li J, Zeng X, Tian X, Song H, Cui Z, Shu T, Wang H, Ren J, Liao S. Enhanced cyclability of Li-O2 batteries with cathodes of Ir and MnO2 supported on well-defined TiN arrays. Nanoscale. 2018;10(6):2983.

    Article  CAS  Google Scholar 

  86. Ha E, Lee LY, Wang J, Li F, Wong KY, Tsang SC. Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure. Adv Mater. 2014;26(21):3496.

    Article  CAS  Google Scholar 

  87. Thomann I, Pinaud BA, Chen Z, Clemens BM, Jaramillo TF, Brongersma ML. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 2011;11(8):3440.

    Article  CAS  Google Scholar 

  88. Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. 2011;10(12):911.

    Article  CAS  Google Scholar 

  89. Zhang J, Tang Y, Lee K, Ouyang MJN. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature. 2010;466(7302):91.

    Article  CAS  Google Scholar 

  90. Sarina S, Waclawik ER, Zhu H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem. 2013;15(7):1814.

    Article  CAS  Google Scholar 

  91. Marceddu M, Saba M, Quochi F, Lai A, Huang J, Talapin DV, Mura A, Bongiovanni G. Charged excitons, Auger recombination and optical gain in CdSe/CdS nanocrystals. Nanotechnology. 2012;23(1):015201.

    Article  CAS  Google Scholar 

  92. Li J, Deng Y, Leng L, Liu M, Huang L, Tian X, Song H, Lu X, Liao S. MOF-templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li-O2 battery cathode. J Power Sources. 2020;450:227725.

    Article  CAS  Google Scholar 

  93. Deng Y, Tian X, Shen G, Gao Y, Lin C, Ling L, Cheng F, Liao S, Zhang S. Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery. J Colloid Interface Sci. 2020;567:410.

    Article  CAS  Google Scholar 

  94. Deng Y, Tian X, Chi B, Wang Q, Ni W, Gao Y, Liu Z, Luo J, Lin C, Ling L, Cheng F, Zhang Y, Liao S, Zhang S. Hierarchically open-porous carbon networks enriched with exclusive Fe-Nx active sites as efficient oxygen reduction catalysts towards acidic H2O2 PEM fuel cell and alkaline Zn-air battery. Chem Eng J. 2020;390:124479.

    Article  CAS  Google Scholar 

  95. Yu X, Shavel A, An X, Luo Z, Ibanez M, Cabot A. Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc. 2014;136(26):9236.

    Article  CAS  Google Scholar 

  96. Yu X, An X, Genç A, Ibáñez M, Arbiol J, Zhang Y, Cabot A. Cu2ZnSnS4–PtM (M = Co, Ni) nanoheterostructures for photocatalytic hydrogen evolution. J Phys Chem C. 2015;119(38):21882.

    Article  CAS  Google Scholar 

  97. Chong R, Wang X, Chang Z, Zhou W, Wu S. SiO2 loading combined with high temperature calcination of kesterite Cu2ZnSnS4 nanocrystals towards enhanced photocatalytic H2 evolution. Int J Hydrogen Energy. 2017;42(32):20703.

    Article  CAS  Google Scholar 

  98. Di T, Xu Q, Ho W, Tang H, Xiang Q, Yu J. Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem. 2019;11(5):1394.

    Article  CAS  Google Scholar 

  99. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694.

    Article  CAS  Google Scholar 

  100. Jiang F, Pan B, You D, Zhou Y, Wang X, Su W. Visible light photocatalytic H2-production activity of epitaxial Cu2ZnSnS4/ZnS heterojunction. Catal Commun. 2016;85:39.

    Article  CAS  Google Scholar 

  101. Yuan M, Zhou WH, Kou DX, Zhou ZJ, Meng YN, Wu SX. Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. Int J Hydrogen Energy. 2018;43(45):20408.

    Article  CAS  Google Scholar 

  102. Li Y, Zhou Z, Lin Y, Ji H, Li H, Wu J, Ashalley E, Usman M, Bao J, Niu X, Wang Z. Significant enhancement of hydrogen production in MoS2/Cu2ZnSnS4 nanoparticles. Part Part Syst Charact. 2018;35(6):1700472.

    Article  CAS  Google Scholar 

  103. Wang X, Ruan Y, Feng S, Chen S, Su K. Ag clusters anchored conducting polyaniline as highly efficient cocatalyst for Cu2ZnSnS4 nanocrystals toward enhanced photocatalytic hydrogen generation. ACS Sustain Chem Eng. 2018;6(9):11424.

    Article  CAS  Google Scholar 

  104. Sridharan M, Kamaraj P, Huh YS, Devikala S, Arthanareeswari M, Selvi JA, Sundaravadivel E. Quaternary CZTS nanoparticle decorated CeO2 as a noble metal free p–n heterojunction photocatalyst for efficient hydrogen evolution. Catal Sci Technol. 2019;9(14):3686.

    Article  CAS  Google Scholar 

  105. Sun K, Zhao X, Zhang Y, Wu D, Zhou X, Xie F, Tang Z, Wang X. Enhanced photocarrier separation in novel Z-scheme Cu2ZnSnS4/Cu2O heterojunction for excellent photocatalyst hydrogen generation. Mater Chem Phys. 2020;251:123172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Natural Science Foundation of Hainan Province (No. 521RC495), Key Research and Development Project of Hainan Province (Nos. ZDYF2020037 and ZDYF2020207), the National Natural Science Foundation of China (Nos. 6210031211 and 21805104), Innovative Research Projects for Graduate Students of Hainan Province (No. Hyb2020-05), and the Start-Up Research Foundation of Hainan University (Nos. KYQD(ZR)-20008, 20082, 20083, 20084, 21065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hao Liu or Xin-Long Tian.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XL., Yang, YJ., Liu, YH. et al. Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4. Rare Met. 41, 2153–2168 (2022). https://doi.org/10.1007/s12598-021-01955-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01955-2

Keywords

Navigation