Skip to main content
Log in

Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Trap-mediated energy loss in the buried interface with non-exposed feature constitutes one of the serious challenges for achieving high-performance perovskite solar cells (PSCs). Inspired by the adhesion mechanism of mussels, herein, three catechol derivatives with functional Lewis base groups, namely 3,4-Dihydroxyphenylalanine (DOPA), 3,4-Dihydroxyphenethylamine (DA) and 3-(3,4-Dihydroxyphenyl) propionic acid (DPPA), were strategically designed. These molecules as interfacial linkers are incorporated into the buried interface between perovskite and SnO2 surface, achieving bilateral synergetic passivation effect. The crosslinking can produce secondary bonding with the undercoordinated Pb2+ and Sn4+ exhibited the best performance and operational stability. Upon the DOPA passivation, a stabilized power conversion efficiency (PCE) of 21.5% was demonstrated for the planar PSCs. After 55 days of room-temperature storage, the unencapsulated devices with the DOPA crosslinker could still maintain 85% of their initial performance in air under relative humidity of ≈15%. This work opens up a new strategy for passivating the buried interfaces of perovskite photovoltaics and also provides important insights into designing defect passivation agents for other perovskite optoelectronic devices, such as light-emitting diodes, photodetectors, and lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, S.; Guan, Y. J.; Sheng, Y. S.; Hu, Y.; Rong, Y. G.; Mei, A. Y.; Han, H. W. A review on additives for halide perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902492.

    Article  CAS  Google Scholar 

  2. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-efficiency perovskite solar cells. Chem. Rev. 2020, 120, 7867–7918.

    Article  CAS  Google Scholar 

  3. Golden. National Renewable Energy Laboratory Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200311.pdf. (2020-5-1)

  4. Fu, L.; Li, H.; Wang, L.; Yin, R. Y.; Li, B.; Yin, L. W. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 4017–4056.

    Article  CAS  Google Scholar 

  5. Vasilopoulou, M.; Fakharuddin, A.; Coutsolelos, A. G.; Falaras, P.; Argitis, P.; Yusoff, A. R. B. M.; Nazeeruddin, M. K. Molecular materials as interfacial layers and additives in perovskite solar cells. Chem. Soc. Rev. 2020, 49, 4496–4526.

    Article  CAS  Google Scholar 

  6. Cai, F. L.; Yan, Y.; Yao, J. X.; Wang, P.; Wang, H.; Gurney, R. S.; Liu, D.; Wang, T. Ionic additive engineering toward high-efficiency perovskite solar cells with reduced grain boundaries and trap density. Adv. Funct. Mater. 2018, 28, 1801985.

    Article  Google Scholar 

  7. Liu, X. X.; Yu, Z. G.; Wang, T.; Chiu, K. L.; Lin, F.; Gong, H.; Ding, L. M.; Cheng, Y. H. Full defects passivation enables 21% efficiency perovskite solar cells operating in air. Adv. Energy Mater. 2020, 10, 2001958.

    Article  CAS  Google Scholar 

  8. Wu, Z. F.; Jiang, M. W.; Liu, Z. H.; Jamshaid, A.; Ono, L. K.; Qi, Y. B. Highly efficient perovskite solar cells enabled by multiple ligand passivation. Adv. Energy Mater. 2020, 10, 1903696.

    Article  CAS  Google Scholar 

  9. Yang, X. Y.; Luo, D. Y.; Xiang, Y. R.; Zhao, L. C.; Anaya, M.; Shen, Y. L.; Wu, J.; Yang, W. Q.; Chiang, Y. H.; Tu, Y. G. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 2021, 33, 2006435.

    Article  CAS  Google Scholar 

  10. Xiao, M. Y.; Lu, T. Y.; Lin, T.; Andre, J. S.; Chen, Z. Understanding molecular structures of buried interfaces in halide perovskite photovoltaic devices nondestructively with sub-monolayer sensitivity using sum frequency generation vibrational spectroscopy. Adv. Energy Mater. 2020, 10, 1903053.

    Article  CAS  Google Scholar 

  11. Xiao, M. Y.; Joglekar, S.; Zhang, X. X.; Jasensky, J.; Ma, J. L.; Cui, Q. Y.; Guo, L. J.; Chen, Z. Effect of interfacial molecular orientation on power conversion efficiency of perovskite solar cells. J. Am. Chem. Soc. 2017, 139, 3378–3386.

    Article  CAS  Google Scholar 

  12. Liu, Z. Z.; Deng, K. M.; Hu, J.; Li, L. Coagulated SnO2 colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability. Angew. Chem., Int. Ed. 2019, 58, 11497–11504.

    Article  CAS  Google Scholar 

  13. Xiong, L. B.; Guo, Y. X.; Wen, J.; Liu, H. R.; Yang, G.; Qin, P. L.; Fang, G. J. Review on the application of SnO2 in perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1802757.

    Article  Google Scholar 

  14. Jiang, Q.; Zhang, X. W.; You, J. B. SnO2: A wonderful electron transport layer for perovskite solar cells. Small 2018, 14, 1801154.

    Article  Google Scholar 

  15. Zhang, S. C.; Si, H. N.; Fan, W. Q.; Shi, M. Y.; Li, M. H.; Xu, C. Z.; Zhang, Z.; Liao, Q. L.; Sattar, A.; Kang, Z.; Zhang, Y. Graphdiyne: Bridging SnO2 and perovskite in planar solar cells. Angew. Chem., Int. Ed. 2020, 59, 11573–11582.

    Article  CAS  Google Scholar 

  16. Lee, H. B.; Kumar, N.; Ovhal, M. M.; Kim, Y. J.; Song, Y. M.; Kang, J. W. Dopant-free, amorphous-crystalline heterophase SnO2 electron transport bilayer enables >20% efficiency in triple-cation perovskite solar cells. Adv. Funct. Mater. 2020, 30, 2001559.

    Article  CAS  Google Scholar 

  17. You, S.; Zeng, H. P.; Ku, Z. L.; Wang, X. Z.; Wang, Z.; Rong, Y. G.; Zhao, Y.; Zheng, X.; Luo, L.; Li, L. et al. Multifunctional polymerregulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 2020, 32, 2003990.

    Article  CAS  Google Scholar 

  18. Wang, J. K.; Datta, K.; Weijtens, C. H. L.; Wienk, M. M.; Janssen, R. A. J. Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1905883.

    Article  CAS  Google Scholar 

  19. Liu, K.; Chen, S.; Wu, J. H.; Zhang, H. Y.; Qin, M. C.; Lu, X. H.; Tu, Y. F.; Meng, Q. B.; Zhan, X. W. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 2018, 11, 3463–3471.

    Article  CAS  Google Scholar 

  20. Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.

    Article  Google Scholar 

  21. Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y. B.; Huang, J. S. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867.

    Article  CAS  Google Scholar 

  22. Xue, Q. F.; Liu, M. Y.; Li, Z. C.; Yan, L.; Hu, Z. C.; Zhou, J. W.; Li, W. Q.; Jiang, X. F.; Xu, B. M.; Huang, F. et al. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv. Funct. Mater. 2018, 28, 1707444.

    Article  Google Scholar 

  23. Wang, F.; Geng, W.; Zhou, Y.; Fang, H. H.; Tong, C. J.; Loi, M. A.; Liu, L. M.; Zhao, N. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 2016, 28, 9986–9992.

    Article  CAS  Google Scholar 

  24. Zhang, Y. Q.; Liu, X. T.; Li, P. W.; Duan, Y. Y.; Hu, X. T.; Li, F. Y.; Song, Y. L. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy 2019, 56, 733–740.

    Article  CAS  Google Scholar 

  25. Long, X. L.; Xu, H. L.; Zhang, D. Y.; Li, J. S. Bioinspired by both mussel foot protein and bone sialoprotein: Universal adhesive coatings for the promotion of mineralization and osteogenic differentiation. Polym. Chem. 2020, 11, 4995–5004.

    Article  CAS  Google Scholar 

  26. Wei, W.; Petrone, L.; Tan, Y.; Cai, H.; Israelachvili, J. N.; Miserez, A.; Waite, J. H. An underwater surface-drying peptide inspired by a mussel adhesive protein. Adv. Funct. Mater. 2016, 26, 3496–3507.

    Article  CAS  Google Scholar 

  27. Yang, B.; Jin, S.; Park, Y.; Jung, Y. M.; Cha, H. J. Coacervation of interfacial adhesive proteins for initial mussel adhesion to a wet surface. Small 2018, 14, 1803377.

    Article  Google Scholar 

  28. Yang, B.; Lim, C.; Hwang, D. S.; Cha, H. J. Switch of surface adhesion to cohesion by DOPA-Fe3+ complexation, in response to microenvironment at the mussel plaque/substrate interface. Chem. Mater. 2016, 28, 7982–7989.

    Article  CAS  Google Scholar 

  29. Wang, J.; Zhang, J.; Zhou, Y. Z.; Liu, H. B.; Xue, Q. F.; Li, X. S.; Chueh, C. C.; Yip, H. L.; Zhu, Z. L.; Jen, A. K. Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 177.

    Article  CAS  Google Scholar 

  30. Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 47–154.

    Article  CAS  Google Scholar 

  31. Chen, Y.; Zuo, X. J.; He, Y. Y.; Qian, F.; Zuo, S. N.; Zhang, Y. L.; Liang, L.; Chen, Z. Q.; Zhao, K.; Liu, Z. K. et al. Dual passivation of perovskite and SnO2 for high-efficiency MAPbI3 perovskite solar cells. Adv. Sci. 2021, 8, 2001466.

    Article  CAS  Google Scholar 

  32. Cai, Y.; Cui, J.; Chen, M.; Zhang, M. M.; Han, Y.; Qian, F.; Zhao, H.; Yang, S. M.; Yang, Z.; Bian, H. T. et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 2020, 31, 2005776.

    Article  Google Scholar 

  33. Wu, W. Q.; Yang, Z. B.; Rudd, P. N.; Shao, Y. C.; Dai, X. Z.; Wei, H. T.; Zhao, J. J.; Fang, Y. J.; Wang, Q.; Liu, Y. et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 2019, 5, eaav8925.

    Article  CAS  Google Scholar 

  34. Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513.

    Article  CAS  Google Scholar 

  35. Zhao, Y. P.; Zhu, P. C.; Huang, S.; Tan, S.; Wang, M. H.; Wang, R.; Xue, J. J.; Han, T. H.; Lee, S. J.; Zhang, A. N. et al. Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 20071–20079.

    Article  CAS  Google Scholar 

  36. Tu, B.; Shao, Y. F.; Chen, W.; Wu, Y. H.; Li, X.; He, Y. L.; Li, J. X.; Liu, F. Z.; Zhang, Z.; Lin, Y.; Lan, X. Q. et al. Novel molecular doping mechanism for n-doping of SnO2 via triphenylphosphine oxide and its effect on perovskite solar cells. Adv. Mater. 2019, 31, 1805944.

    Article  Google Scholar 

  37. Jung, E. H.; Chen, B.; Bertens, K.; Vafaie, M.; Teale, S.; Proppe, A.; Hou, Y.; Zhu, T.; Zheng, C.; Sargent, E. H. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 2020, 5, 2796–2801.

    Article  CAS  Google Scholar 

  38. Obrzut, J.; Page, K. A. Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys. Rev. B 2009, 80, 195211.

    Article  Google Scholar 

  39. Goodman, A. M.; Rose, A. Double extraction of uniformly generated electron-hole pairs from insulators with noninjecting contacts. J. Appl. Phys. 1971, 42, 2823–2830.

    Article  CAS  Google Scholar 

  40. Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038.

    Article  CAS  Google Scholar 

  41. Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang J. S. Nonwetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

    Article  CAS  Google Scholar 

  42. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  CAS  Google Scholar 

  43. Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 2019, 366, 749–753.

    Article  CAS  Google Scholar 

  44. Motti, S. G.; Meggiolaro, D.; Martani, S.; Sorrentino, R.; Barker, A. J.; De Angelis, F.; Petrozza, A. Defect activity in lead halide perovskites. Adv. Mater. 2019, 31, 1901183.

    Article  CAS  Google Scholar 

  45. Zhang, X. L.; Santra, P. K.; Tian, L.; Johansson, M. B.; Rensmo, H.; Johansson, E. M. J. Highly efficient flexible quantum dot solar cells with improved electron extraction using MgZnO nanocrystals. ACS Nano 2017, 11, 8478–8487.

    Article  CAS  Google Scholar 

  46. Kirchartz, T.; Deledalle, F.; Tuladhar, P. S.; Durrant, J. R.; Nelson, J. On the differences between dark and light ideality factor in polymer: Fullerene solar cells. J. Phys. Chem. Lett. 2013, 4, 2371–2376.

    Article  CAS  Google Scholar 

  47. Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

    Article  CAS  Google Scholar 

  48. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the Projector Augmented-Wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  50. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Key R&D Program of China (No. 2018YFA0208501), the National Nature Science Foundation of China (Nos. 51803217, 51773206, 91963212, and 51961145102 [BRICS project]), Beijing National Laboratory for Molecular Sciences (Nos. BNLMS-CXXM-202005 and 2019BMS20003), K. C. Wong Education Foundation, Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202005), Key R&D and Promotion Project of Henan Province (No. 192102210032), Open Project of State Key Laboratory of Silicon Materials (No. SKL2019-10), and Outstanding Young Talent Research Fund of Zhengzhou University. The authors also thank the Advanced Analysis & Computation Center at Zhengzhou University for materials and device characterization support. The authors also thank Prof. Bin Zhang in School of Materials Science and Engineering at Zhengzhou University for the materials characterization and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Zhang.

Electronic Supplementary Material

12274_2021_3600_MOESM1_ESM.pdf

Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ma, J., Li, Z. et al. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Res. 15, 1069–1078 (2022). https://doi.org/10.1007/s12274-021-3600-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3600-z

Keywords

Navigation