Skip to main content
Log in

Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas-liquid-solid triphasic catalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The wettability of catalyst plays an important role in regulating catalytic performance in heterogenous catalysis because the microenvironment around the catalytic sites directly determines the mass transfer process of reactants. Inspired by gas trapped on the surface of subaquatic spiders, amphiphilic micro-organohydrogels with tunable surface wettabilities were developed by anchoring various alkane chains onto a poly(2-(dimethylamino)ethyl methacrylate) (p(DMAEMA)) hydrophilic microgel network. Palladium nanoparticles (Pd NPs) were encapsulated in amphiphilic microgels (amphiphilic Pd@M) to catalyze hydrogenation reaction, achieving higher activities than pristine monohydrophilic Pd@M composite. The underwater oleophilicity and aerophilicity of Pd@M composites were quantified by oil/gas adhesion measurements and computational simulations. The higher amphiphilic catalytic activities are attributed to the formation of a gas-oil-solid reaction interface on the catalyst surfaces, allowing rapid transport of H2 and organic substrates through water to the Pd catalytic sites. Additionally, amphiphilic Pd@M composites also exhibit more superior catalytic performance in multi-substrates reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savage, N. Synthetic coatings: Super surfaces. Nature 2015, 519, S7.

    Article  CAS  Google Scholar 

  2. Darmanin, T.; Guittard, F. Superhydrophobic and superoleophobic properties in nature. Mater. Today 2015, 18, 273–285.

    Article  CAS  Google Scholar 

  3. Xu, T. L.; Xu, L. P.; Zhang, X. J.; Wang, S. T. Bioinspired super-wettable micropatterns for biosensing. Chem. Soc. Rev. 2019, 48, 3153–3165.

    Article  CAS  Google Scholar 

  4. Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

    Article  CAS  Google Scholar 

  5. Jin, Z.; Wang, L.; Zuidema, E.; Mondal, K.; Zhang, M.; Zhang, J.; Wang, C. T.; Meng, X. J.; Yang, H. Q.; Mesters, C. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193–197.

    Article  CAS  Google Scholar 

  6. Leung, J. J.; Vigil, J. A.; Warnan, J.; Moore, E. E.; Reisner, E. Rational design of polymers for selective CO2 reduction catalysis. Angew. Chem., Int. Ed. 2019, 58, 7697–7701.

    Article  CAS  Google Scholar 

  7. Huang, G.; Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Polydimethylsiloxane Coating for a palladium/MOF composite: Highly improved catalytic performance by surface hydrophobization. Angew. Chem., Int. Ed. 2016, 55, 7379–7383.

    Article  CAS  Google Scholar 

  8. Sheng, X.; Liu, Z.; Zeng, R. S.; Chen, L. P.; Feng, X. J.; Jiang, L. Enhanced photocatalytic reaction at air-liquid-solid joint interfaces. J. Am. Chem. Soc. 2017, 139, 12402–12405.

    Article  CAS  Google Scholar 

  9. Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

    Article  CAS  Google Scholar 

  10. Li, A.; Cao, Q.; Zhou, G. Y.; Schmidt, B. V. K. J.; Zhu, W. J.; Yuan, X. T.; Huo, H. L.; Gong, J. L. Antonietti, M. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angew. Chem., Int. Ed. 2019, 58, 14549–14555.

    Article  CAS  Google Scholar 

  11. Thiot, C.; Schmutz, M.; Wagner, A.; Mioskowski, C. Polyionic gels: Efficient heterogeneous media for metal scavenging and catalysis. Angew. Chem., Int. Ed. 2006, 45, 2868–2871.

    Article  CAS  Google Scholar 

  12. Ferguson, C. T. J.; Huber, N.; Landfester, K.; Zhang, K. A. I. Dual-responsive photocatalytic polymer nanogels. Angew. Chem., Int. Ed. 2019, 58, 10567–10571.

    Article  CAS  Google Scholar 

  13. Li, F. Y.; Wang, C. Y.; Guo, W. W. Multifunctional poly-N-isopropylacrylamide/DNAzyme microgels as highly efficient and recyclable catalysts for biosensing. Adv. Funct. Mater. 2018, 28, 1705876.

    Article  Google Scholar 

  14. Fang, W. W.; Zhang, Y.; Wu, J. J.; Liu, C.; Zhu, H. B.; Tu, T. Recent advances in supramolecular gels and catalysis. Chem.-Asian J. 2018, 13, 712–729.

    Article  CAS  Google Scholar 

  15. Malviya, N.; Sonkar, C.; Kundu, B. K.; Mukhopadhyay, S. Discotic organic gelators in ion sensing, metallogel formation, and bioinspired catalysis. Langmuir 2018, 34, 11575–11585.

    Article  CAS  Google Scholar 

  16. Guo, Y. H.; Bae, J.; Fang, Z. W.; Li, P. P.; Zhao, F.; Yu, G. H. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev. 2020, 120, 7642–7707.

    Article  CAS  Google Scholar 

  17. Sano, K.; Ishida, Y.; Aida, T. Synthesis of anisotropic hydrogels and their applications. Angew. Chem., Int. Ed. 2018, 57, 2532–2543.

    Article  CAS  Google Scholar 

  18. Jung, J. H.; Lee, J. H.; Silverman, J. R.; John, G. Coordination polymer gels with important environmental and biological applications. Chem. Soc. Rev. 2013, 42, 924–936.

    Article  CAS  Google Scholar 

  19. Kuksenok, O.; Dayal, P.; Bhattacharya, A.; Yashin, V. V.; Deb, D.; Chen, I. C.; Van Vliet, K. J.; Balazs, A. C. Chemo-responsive, self-oscillating gels that undergo biomimetic communication. Chem. Soc. Rev. 2013, 42, 7257–7277.

    Article  CAS  Google Scholar 

  20. Gu, Y. W.; Zhao, J. L.; Johnson, J. A. Polymer networks: From plastics and gels to porous frameworks. Angew. Chem., Int. Ed. 2020, 59, 5022–5049.

    Article  CAS  Google Scholar 

  21. Mateen, M.; Shah, K.; Chen, Z.; Chen, C.; Li, Y. D. Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Res. 2019, 12, 1631–1634.

    Article  CAS  Google Scholar 

  22. He, T. W.; Zhang, C. M.; Zhang, L.; Du, A. J. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano Res. 2019, 12, 1817–1823.

    Article  CAS  Google Scholar 

  23. Guo, L.; Mao, J. J.; Guo, S. X.; Zhang, Q.; Cai S. F.; He W. PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides. Nano Res. 2019, 12, 1659–1662.

    Article  CAS  Google Scholar 

  24. Hawkins, K.; Patterson, A. K.; Clarke, P. A.; Smith, D. K. Catalytic gels for a prebiotically relevant asymmetric aldol reaction in water: From organocatalyst design to hydrogel discovery and back again. J. Am. Chem. Soc. 2020, 142, 4379–4389.

    Article  CAS  Google Scholar 

  25. Bernini, R.; Cacchi, S.; Fabrizi, G.; Niembro, S.; Prastaro, A.; Shafir, A.; Vallribera, A. Perfluoro-tagged gold nanoparticles immobilized on fluorous silica gel: A reusable catalyst for the benign oxidation and oxidative esterification of alcohols. ChemSusChem 2009, 2, 1036–1040.

    Article  CAS  Google Scholar 

  26. Hua, H.; Zeng, J. C.; Wang, G. R.; Zhang, J.; Zhou, J. Z.; Pan, Y.; Liu, Q.; Xu, Y. F.; Qian, G. R.; Xu, Z. P. Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. J. Hazard. Mater. 2020, 381, 120935.

    Article  CAS  Google Scholar 

  27. Slavik, P.; Smith, D. K. Hybrid hydrogels loaded with palladium nanoparticles-Catalysts for environmentally-friendly Sonogashira and Heck cross-coupling reactions. Tetrahedron 2020, 76, 131344.

    Article  CAS  Google Scholar 

  28. Zhao, Y. L.; Kang, S. C.; Qin, L.; Wang, W.; Zhang, T. T.; Song, S. X.; Komarneni, S. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J. 2020, 379, 122322.

    Article  CAS  Google Scholar 

  29. Shim, Y.; Young, R. M.; Douvalis, A. P.; Dyar, S. M.; Yuhas, B. D.; Bakas, T.; Wasielewski, M. R.; Kanatzidis, M. G. Enhanced photochemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2+ (M = Pt, Zn, Co, Ni, Sn) centers. J. Am. Chem. Soc. 2014, 136, 13371–13380.

    Article  CAS  Google Scholar 

  30. Weingarten, A. S.; Kazantsev, R. V.; Palmer, L. C.; Fairfield, D. J.; Koltonow, A. R.; Stupp, S. I. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 2015, 137, 15241–15246.

    Article  CAS  Google Scholar 

  31. Iuster, N.; Tairy, O.; Driver, M. J.; Armes, S. P. Klein J. Cross-linking highly lubricious phosphocholinated polymer brushes: Effect on surface interactions and frictional behavior. Macromolecules 2017, 50, 7361–7371.

    Article  CAS  Google Scholar 

  32. Yao, X.; Chen, L.; Ju, J.; Li, C. H.; Tian, Y.; Jiang, L.; Liu M. J. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification. Adv. Mater. 2016, 28, 7383–7389.

    Article  CAS  Google Scholar 

  33. Georgieva, D.; Schmitt, V.; Leal-Calderon, F.; Langevin, D. On the possible role of surface elasticity in emulsion stability. Langmuir 2009, 25, 5565–5573.

    Article  CAS  Google Scholar 

  34. Blundell, R. K.; Licence, P. Tuning cation-anion interactions in ionic liquids by changing the conformational flexibility of the cation. Chem. Commun. 2014, 50, 12080–12083.

    Article  CAS  Google Scholar 

  35. Mathew, R. T.; Cooney, R. P.; Malmstrom, J.; Doyle, C. S. Atomic force microscopy and angular-dependent X-ray photoelectron spectroscopy studies of anchored quaternary ammonium salt biocides on quartz surfaces. Langmuir 2018, 34, 4750–4761.

    Article  CAS  Google Scholar 

  36. Ikegami, S.; Hamamoto, H. Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem. Rev. 2009, 109, 583–593.

    Article  CAS  Google Scholar 

  37. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.

    Article  CAS  Google Scholar 

  38. Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  39. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257.

    Article  CAS  Google Scholar 

  40. Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 1973, 28, 213–222.

    Article  CAS  Google Scholar 

  41. Yu, C. M.; Cao, M. Y.; Dong, Z. C.; Wang, J. M.; Li, K.; Jiang, L. Spontaneous and directional transportation of gas bubbles on superhydrophobic cones. Adv. Funct. Mater. 2016, 26, 3236–3243.

    Article  CAS  Google Scholar 

  42. Yu, C. M.; Zhang, P. P.; Wang, J. M.; Jiang, L. Superwettability of gas bubbles and its application: From bioinspiration to advanced materials. Adv. Mater. 2017, 29, 1703053.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Funds for Distinguished Young Scholar (No. 21725401), the National Key Technologies R&D Program of China (No. 2017YFA0207800), the China Scholarship Council (CSC, No. 201606025097), the 111 project (No. B14009), the Chinese Postdoctoral Science Foundation (Nos. 2017M620012 and 2019M650434), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyi Zhao or Mingjie Liu.

Electronic Supplementary Material

12274_2021_3520_MOESM1_ESM.pdf

Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas-liquid-solid triphasic catalytic performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhao, T., Yu, C. et al. Amphiphilic Pd@micro-organohydrogels with controlled wettability for enhancing gas-liquid-solid triphasic catalytic performance. Nano Res. 15, 557–563 (2022). https://doi.org/10.1007/s12274-021-3520-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3520-y

Keywords

Navigation