Skip to main content
Log in

Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pristine and Bi-doped lanthanum titanium oxide (La2Ti2O7) nanosheets have been synthesized as photocatalysts for overall solar water splitting. The surface hole trap is a critical factor that limits the photocatalytic activity of pristine La2Ti2O7. Deposition of cobalt phosphate (Co-Pi) and platinum (Pt) nanoparticles on La2Ti2O7 cannot remove the surface traps although they are essential for enabling the oxygen and hydrogen evolution reactions. It is interesting that doping bismuth (Bi) into La2Ti2O7 nanosheets has eliminated the surface traps due to surface enrichment of Bi. The Co-Pi/Bi-La2Ti2O7/Pt nanosheets exhibit increasing photocatalytic activity toward overall water splitting with increasing the Bi-dopant level up to 5 at.%. Further increasing the Bi-dopant level leads to the formation of localized states above the valence band, leading to the lifetime reduction of photogenerated charge-carriers, and jeopardizing the photocatalytic activity. This work proposes an effective strategy to address the surface trapping and surface catalysis issues in the nanostructured metal oxide photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.

    Article  CAS  Google Scholar 

  2. Tofanello, A.; Shen, S. H.; de Souza, F. L.; Vayssieres, L. Strategies to improve the photoelectrochemical performance of hematite nanorod-based photoanodes. APL Mater. 2020, 8, 040905.

    Article  CAS  Google Scholar 

  3. Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z. L.; Manivannan, A.; Zhi, M. J.; Li, M.; Wu, N. Q. Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.

    Article  CAS  Google Scholar 

  4. Tang, P. Y.; Arbiol, J. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horiz. 2019, 4, 1256–1276.

    Article  CAS  Google Scholar 

  5. Zachäus, C.; Abdi, F. F.; Peter, L. M.; Van De Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712–3719.

    Article  Google Scholar 

  6. Yang, H.; Bright, J.; Kasani, S.; Zheng, P.; Musho, T.; Chen, B. L.; Huang, L.; Wu, N. Q. Metal-organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Res. 2019, 12, 643–650.

    Article  CAS  Google Scholar 

  7. Meng, F. K.; Hong, Z. L.; Arndt, J.; Li, M.; Zhi, M. J.; Yang, F.; Wu, N. Q. Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res. 2012, 5, 213–221.

    Article  CAS  Google Scholar 

  8. Zhang, J. Y.; Dang, W. Q.; Ao, Z. M.; Cushing, S. K.; Wu, N. Q. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations. Phys. Chem. Chem. Phys. 2015, 17, 8994–9000.

    Article  CAS  Google Scholar 

  9. Kasahara, A.; Nukumizu, K.; Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Photoreactions on LaTiO2N under visible light irradiation. J. Phys. Chem. A 2002, 106, 6750–6753.

    Article  CAS  Google Scholar 

  10. Shirai, K.; Sugimoto, T.; Watanabe, K.; Haruta, M.; Kurata, H.; Matsumoto, Y. Effect of water adsorption on carrier trapping dynamics at the surface of anatase TiO2 nanoparticles. Nano Lett. 2016, 16, 1323–1327.

    Article  CAS  Google Scholar 

  11. Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Recombination pathways in the degussa P25 formulation of TiO2: Surface versus lattice mechanisms. J. Phys. Chem. B 2005, 109, 977–980.

    Article  CAS  Google Scholar 

  12. Carey, J. J.; McKenna, K. P. Screening doping strategies to mitigate electron trapping at anatase TiO2 surfaces. J. Phys. Chem. C 2019, 123, 22358–22367.

    Article  CAS  Google Scholar 

  13. Chen, H. D.; Zhang, F.; Zhang, W. F.; Du, Y. G.; Li, G. Q. Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3. Appl. Phys. Lett. 2018, 112, 013901.

    Article  Google Scholar 

  14. Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

    Article  CAS  Google Scholar 

  15. Trześniewski, B. J.; Digdaya, I. A.; Nagaki, T.; Ravishankar, S.; Herraiz-Cardona, I.; Vermaas, D. A.; Longo, A.; Gimenez, S.; Smith, W. A. Near-complete suppression of surface losses and total internal quantum efficiency in BiVO4 photoanodes. Energy Environ. Sci. 2017, 10, 1517–1529.

    Article  Google Scholar 

  16. Shi, Q.; Murcia-López, S.; Tang, P. Y.; Flox, C.; Morante, J. R.; Bian, Z. Y.; Wang, H.; Andreu, T. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process. ACS Catal. 2018, 8, 3331–3342.

    Article  CAS  Google Scholar 

  17. Yatom, N.; Neufeld, O.; Caspary Toroker, M. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J. Phys. Chem. C 2015, 119, 24789–24795.

    Article  CAS  Google Scholar 

  18. Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 2012, 109, 15640–15645.

    Article  CAS  Google Scholar 

  19. Kim, W. D.; Kim, J. H.; Lee, S.; Lee, S.; Woo, J. Y.; Lee, K.; Chae, W. S.; Jeong, S.; Bae, W. K.; McGuire, J. A. Role of surface states in photocatalysis: Study of chlorine-passivated CdSe nanocrystals for photocatalytic hydrogen generation. Chem. Mater. 2016, 28, 962–968.

    Article  CAS  Google Scholar 

  20. Cai, X. Y.; Zhu, M. S.; Elbanna, O. A.; Fujitsuka, M.; Kim, S.; Mao, L.; Zhang, J. Y.; Majima, T. Au nanorod photosensitized La2Ti2O7 nanosteps: Successive surface heterojunctions boosting visible to near-infrared photocatalytic H2 evolution. ACS Catal. 2018, 8, 122–131.

    Article  CAS  Google Scholar 

  21. Tan, H. L.; Wen, X. M.; Amal, R.; Ng, Y. H. BiVO4 {010} and {110} relative exposure extent: Governing factor of surface charge population and photocatalytic activity. J. Phys. Chem. Lett. 2016, 7, 1400–1405.

    Article  CAS  Google Scholar 

  22. Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nat. Commun. 2013, 4, 2500.

    Article  Google Scholar 

  23. Mao, L.; Cai, X. Y.; Gao, H.; Diao, X. G.; Zhang, J. Y. A newly designed porous oxynitride photoanode with enhanced charge carrier mobility. Nano Energy 2017, 39, 172–182.

    Article  CAS  Google Scholar 

  24. Pussacq, T.; Kabbour, H.; Colis, S.; Vezin, H.; Saitzek, S.; Gardoll, O.; Tassel, C.; Kageyama, H.; Laberty Robert, C.; Mentré, O. Reduction of Ln2Ti2O7 layered perovskites: A survey of the anionic lattice, electronic features, and potentials. Chem. Mater. 2017, 29, 1047–1057.

    Article  CAS  Google Scholar 

  25. He, R. A.; Xu, D. F.; Cheng, B.; Yu, J. G.; Ho, W. Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 2018, 3, 464–504.

    Article  CAS  Google Scholar 

  26. Li, J.; Cai, L. J.; Shang, J.; Yu, Y.; Zhang, L. Z. Giant enhancement of internal electric field boosting bulk charge separation for photo-catalysis. Adv. Mater. 2016, 28, 4059–4064.

    Article  CAS  Google Scholar 

  27. Pan, Z. H.; Yanagi, R.; Wang, Q.; Shen, X.; Zhu, Q. H.; Xue, Y. D.; Röhr, J. A.; Hisatomi, T.; Domen, K.; Hu, S. Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy Environ. Sci. 2020, 13, 162–173.

    Article  CAS  Google Scholar 

  28. Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

    Article  CAS  Google Scholar 

  29. Ren, X. N.; Hu, Z. Y.; Jin, J.; Wu, L.; Wang, C.; Liu, J.; Liu, F.; Wu, M.; Li, Y.; van Tendeloo, G. et al. Cocatalyzing Pt/PtO phase-junction nanodots on hierarchically porous TiO2 for highly enhanced photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 2017, 9, 29687–29698.

    Article  CAS  Google Scholar 

  30. Zhang, G. G.; Lan, Z. A.; Lin, L. H.; Lin, S.; Wang, X. C. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 2016, 7, 3062–3066.

    Article  CAS  Google Scholar 

  31. Park, H.; Kim, H. I.; Moon, G. H.; Choi, W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 2016, 9, 411–433.

    Article  CAS  Google Scholar 

  32. Li, Z.; Zhang, L.; Liu, Y.; Shao, C. Y.; Gao, Y. Y.; Fan, F. T.; Wang, J. X.; Li, J. M.; Yan, J. C.; Li, R. G et al. Surface-polarity-induced spatial charge separation boosts photocatalytic overall water splitting on GaN nanorod arrays. Angew. Chem., Int. Ed. 2020, 132, 945–952.

    Article  Google Scholar 

  33. Li, S.; Hou, L. B.; Zhang, L. J.; Chen, L. P.; Lin, Y. H.; Wang, D. J.; Xie, T. F. Direct evidence of the efficient hole collection process of the CoOx cocatalyst for photocatalytic reactions: A surface photovoltage study. J. Mater. Chem. A 2015, 3, 17820–17826.

    Article  CAS  Google Scholar 

  34. Li, J. T.; Cushing, S. K.; Zheng, P.; Senty, T.; Meng, F. K.; Bristow, A. D.; Manivannan, A.; Wu, N. Q. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 2014, 136, 8438–8449.

    Article  CAS  Google Scholar 

  35. Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

    Article  CAS  Google Scholar 

  36. Mao, L.; Cai, X. Y.; Yang, S. Q.; Han, K. L.; Zhang, J. Y. Black phosphorus-CdS-La2Ti2O7 ternary composite: Effective noble metalfree photocatalyst for full solar spectrum activated H2 production. Appl. Catal. B: Environ. 2019, 242, 441–448.

    Article  CAS  Google Scholar 

  37. Han, K.; Kreuger, T.; Mei, B.; Mul, G. Transient behavior of Ni@NiOx functionalized SrTiO3 in overall water splitting. ACS Catal. 2017, 7, 1610–1614.

    Article  CAS  Google Scholar 

  38. Murthy, D. H. K.; Matsuzaki, H.; Wang, Z.; Suzuki, Y.; Hisatomi, T.; Seki, K.; Inoue, Y.; Domen, K.; Furube, A. Origin of the overall water splitting activity of Ta3N5 revealed by ultrafast transient absorption spectroscopy. Chem. Sci. 2019, 10, 5353–5362.

    Article  CAS  Google Scholar 

  39. Cai, X. Y.; Mao, L.; Yang, S. Q.; Han, K. L.; Zhang, J. Y. Ultrafast charge separation for full solar spectrum-activated photocatalytic H2 generation in a black phosphorus-Au-CdS heterostructure. ACS Energy Lett. 2018, 3, 932–939.

    Article  CAS  Google Scholar 

  40. Swinney, M. W.; McClory, J. W.; Petrosky, J. C.; Yang, S.; Brant, A. T.; Adamiv, V. T.; Burak, Y. V.; Dowben, P. A.; Halliburton, L. E. Identification of electron and hole traps in lithium tetraborate (Li2B4O7) crystals: Oxygen vacancies and lithium vacancies. J. Appl. Phys. 2010, 107, 113715.

    Article  Google Scholar 

  41. Walsby, C. J.; Lees, N. S.; Tennant, W. C.; Claridge, R. F. C. 15 K EPR of an oxygen-hole boron centre, [BO4]0, in x-irradiated zircon. J. Phys.: Condens. Matter 2000, 12, 1441.

    CAS  Google Scholar 

  42. Chen, Y.; Abraham, M. M. Trapped-hole centers in alkaline-earth oxides. J. Phys. Chem. Solids 1990, 51, 747–764.

    Article  CAS  Google Scholar 

  43. Nuttall, R. H. D.; Weil, J. A. The magnetic properties of the oxygen-hole aluminum centers in crystalline SiO2. I. [AlO]0. Can. J. Phys. 1981, 59, 1696–1708.

    Article  CAS  Google Scholar 

  44. Jones, R. O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689–746.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is partially supported by the National Natural Science Foundation of China (Nos. 51972010 and 51472013), the Natural Science Foundation of Jiangsu Province (Youth Fund, Nos. BK20190640 and BK20190641), and the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS11). We thank the Open Sharing Fund for the large-scale instruments and equipment of China University of Mining and Technology (CUMT), and the high-performance computing platform of Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Zhang.

Electronic Supplementary Material

12274_2021_3498_MOESM1_ESM.pdf

Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Mao, L., Fujitsuka, M. et al. Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting. Nano Res. 15, 438–445 (2022). https://doi.org/10.1007/s12274-021-3498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3498-5

Keywords

Navigation