Skip to main content
Log in

In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The goal of material chemistry is to study the relationship among hierarchical structure, chemical reaction and precision preparation for materials, yet tracking pyrolysis process on multi-dimensional scale is still at primary stage. Here we propose packing mode analysis to understand evolution process in high temperature reaction. As a proof of concept, we first design a salan-ligated Mn3 (Mn3(3-MeOsalophen)2(Cl)2) cluster and pyrolyze it under an inert atmosphere directly to a mixed valence MnOx embedded in a porous N-doped carbon skeleton (MnOx/C). Meanwhile, combining thermogravimetry-mass spectrometry (TG-MS) with other characterization techniques, its pyrolysis process is precisely tracked real-time and Mn2+/Mn3+ ratios in the resulting materials are deduced, ensuring excellent electrochemical advantages. As a result, the as-preferred MnOx/C-900 sample reaches 943 F/g at 1 A/g, maintaining good durability under 5,000 cycles with 90% retention. The highlight of packing mode analysis strategy in this work would provide a favorable approach to explore the potential relationship between structure and performance in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides, G. M. Reinventing Chemistry. Angew. Chem., Int. Ed. 2015, 54, 3196–3209.

    Article  CAS  Google Scholar 

  2. Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum M. W.; Simon P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.

    Article  CAS  Google Scholar 

  3. Zhu, X. J.; Guo, Y. Q.; Cheng, H.; Dai, J.; An, X. D.; Zhao, J. Y.; Tian, K. Z.; Wei, S. Q.; Zeng, X. C.; Wu, C. Z. et al. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat. Commun. 2016, 7, 11210.

    Article  CAS  Google Scholar 

  4. He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217–7223.

    Article  CAS  Google Scholar 

  5. Xiao, X.; Zou, L. L.; Pang, H; Xu, Q. Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 2020, 49, 301–331.

    Article  CAS  Google Scholar 

  6. Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 2017, 29, 1703614.

    Article  Google Scholar 

  7. Xue, Y. K.; Li, H. Q.; Ye, X. W. Y.; Yang, S. L.; Zheng, Z. P.; Han, X.; Zhang, X. B.; Chen, L. N.; Xie, Z. X.; Kuang, Q. et al. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Res. 2019, 12, 2490–2497.

    Article  CAS  Google Scholar 

  8. Meng, Z. G.; Xiao, F.; Wei, Z. X.; Guo, X. Y.; Zhu, Y.; Liu, Y. R.; Li, G. J.; Yu, Z. Q.; Shao, M. H.; Wong, W. Y. Direct synthesis of L10-FePt nanoparticles from single-source bimetallic complex and their electrocatalytic applications in oxygen reduction and hydrogen evolution reactions. Nano Res. 2019, 12, 2954–2959.

    Article  Google Scholar 

  9. Xue, Z. Q.; Liu, K.; Liu, Q. L.; Li, Y. L.; Li, M. R.; Su, C. Y.; Ogiwara, N.; Kobayashi, H.; Kitagawa, H.; Liu, M. et al. Missing-linker metal-organic frameworks for oxygen evolution reaction. Nat. Commun. 2019, 10, 5048.

    Article  Google Scholar 

  10. Li, Y. L.; Jia, B. M.; Fan, Y. Z.; Zhu, K. L.; Li, G. Q.; Su, C. Y. Bimetallic zeolitic imidazolite framework derived carbon nanotubes embedded with Co nanoparticles for efficient bifunctional oxygen electrocatalyst. Adv. Energy Mater. 2017, 8, 1702048.

    Article  Google Scholar 

  11. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    Article  CAS  Google Scholar 

  12. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    Article  CAS  Google Scholar 

  13. Yang, W. P.; Li, X. X.; Li, Y.; Zhu, R. M.; Pang, H. Applications of metal-organic-framework-derived carbon materials. Adv. Mater. 2019, 31, 1804740.

    Google Scholar 

  14. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Article  CAS  Google Scholar 

  15. Chu, Y. T.; Guo, L. Y.; Xi, B. J.; Feng, Z. Y; Wu, F. F.; Lin, Y.; Liu, J. C.; Sun, D.; Feng, J. K.; Qian, Y. T. et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-Organic clusters for efficient lithium storage. Adv. Mater. 2018, 30, 1704244.

    Article  Google Scholar 

  16. Zhao J. Q.; Cai, D. D.; Dai, J.; Kurmoo, M.; Peng, X.; Zeng, M. H. Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode. Sci. Bull. 2019, 64, 1667–1674.

    Article  CAS  Google Scholar 

  17. Pan, B. X.; Peng, X.; Wang, Y. F.; An, Q.; Zhang, X.; Zhang, Y. X.; Teets, T. S.; Zeng, M. H. Tracking the pyrolysis process of a 3-MeOsalophen-ligand based Co2 complex for promoted oxygen evolution reaction. Chem. Sci. 2019, 10, 4560–4566.

    Article  CAS  Google Scholar 

  18. Wang, Y. F.; Liang, Y. Y.; Wu, Y. F.; Yang, J.; Zhang, X.; Cai, D. D.; Peng, X.; Kurmoo, M.; Zeng, M. H. In situ pyrolysis tracking and real-time phase evolution: From a binary zinc cluster to supercapacitive porous carbon. Angew. Chem, Int. Ed. 2020, 59, 13232–13237.

    Article  CAS  Google Scholar 

  19. Hu, Y. T.; Wu, Y.; Wang, J. Manganese-oxide-based electrode materials for energy storage applications: How close are we to the theoretical capacitance? Adv. Mater. 2018, 30, 1802569.

    Article  Google Scholar 

  20. Wu, J. C.; Peng, X.; Guo, Y. Q.; Zhou, H. D.; Zhao, J. Y.; Ruan, K. Q.; Chu, W. S.; Wu, C. Z. Ultrathin nanosheets of Mn3O4: A new two-dimensional ferromagnetic material with strong magnetocrystalline anisotropy. Front. Phys. 2018, 13, 138110.

    Article  Google Scholar 

  21. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

    Article  CAS  Google Scholar 

  22. Gadipelli, S.; Guo, Z. X. Tuning of ZIF-derived carbon with high activity, nitrogen functionality, and yield-a case for superior CO2 capture. ChemSusChem 2015, 8, 2123–2132.

    Article  CAS  Google Scholar 

  23. Peng, X.; Guo, Y. Q.; Yin, Q.; Wu, J. C.; Zhao, J. Y.; Wang, C. M.; Tao, S.; Chu, W. S.; Wu, C. Z.; Xie, Y. Double-exchange effect in two-dimensional MnO2 nanomaterials. J. Am. Chem. Soc. 2017, 139, 5242–5248.

    Article  CAS  Google Scholar 

  24. Guo, Y. Q.; Tong, Y.; Chen, P. Z.; Xu, K.; Zhao, J. Y.; Lin, Y.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 2015, 27, 5989–5994.

    Article  CAS  Google Scholar 

  25. Chen, S. J.; Cai, D. P.; Yang, X. H.; Chen, Q. D.; Zhan, H. B.; Qu, B. H.; Wang, T. H. Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries. Electrochim. Acta 2017, 256, 63–72.

    Article  CAS  Google Scholar 

  26. Yang, M.; Zhong, Y. R.; Zhou, X. L.; Ren, J. J.; Su, L. W.; Wei, J. P.; Zhou, Z. Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 12519–12525.

    Article  CAS  Google Scholar 

  27. Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

    Article  CAS  Google Scholar 

  28. Ćirić-Marjanović, G; Pašt, I.; Mentus, S. One-dimensional nitrogen-containing carbon nanostructures. Prog. Mater. Sci. 2015, 69, 61–182.

    Article  Google Scholar 

  29. Liao, Q. Y.; Li, N.; Cui, H.; Wang, C. X. Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 13715–13720.

    Article  CAS  Google Scholar 

  30. Young, C.; Kim, J.; Kaneti, Y. V.; Yamauchi, Y. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications. ACS Appl. Energy Mater. 2018, 1, 2007–2015.

    Article  CAS  Google Scholar 

  31. Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456–463.

    Article  CAS  Google Scholar 

  32. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  Google Scholar 

  33. Li, L.; Hu, Z. A.; An, N.; Yang, Y. Y.; Li, Z. M.; Wu, H. Y. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 2014, 118, 22865–22872.

    Article  CAS  Google Scholar 

  34. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43, 1293–1302.

    Article  CAS  Google Scholar 

  35. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

    Article  CAS  Google Scholar 

  36. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem., Int. Ed. 2008, 120, 3440–3443.

    Article  Google Scholar 

  37. Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214.

    Article  CAS  Google Scholar 

  38. Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.

    Article  CAS  Google Scholar 

  39. Wu, J. J.; Peng, J.; Yu, Z.; Zhou, Y.; Guo, Y. Q.; Li, Z. J.; Lin, Y.; Ruan, Z. Q.; Wu, C. Z.; Xie, Y. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance. J. Am. Chem. Soc. 2018, 140, 493–498.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Fund for Distinguished Young Scholars (No. 21525101), the National Natural Science Foundation of China (NSFC) (No. 21805074), the BAGUI talent program (No. 2019AC26001), and the NSF of Guangxi (NSFGX, No. 2017GXNSFDA198040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Peng or Ming-Hua Zeng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, K., Peng, X. et al. In-situ evolution process understanding from a salan-ligated manganese cluster to supercapacitive application. Nano Res. 15, 346–351 (2022). https://doi.org/10.1007/s12274-021-3481-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3481-1

Keywords

Navigation