Skip to main content

Advertisement

Log in

Facile synthesis of cobalt-doped Ni3(NO3)2(OH)4 porous nanosheets for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As an emerging electrode material of supercapacitors, Ni3(NO3)2(OH)4 holds remarkable merits including environmental friendliness, large layer spacing (c = 6.9 Å), and high specific capacitance. Nevertheless, its rate capability and cycling stability have yet to be improved. Herein, a simple Co-doping strategy is introduced into the solution combustion preparation process to solve these problems. The optimized Co-doping dosage is determined to be 15 at.%, based on electrochemical performance test. The doped cobalt improves not only the rate capability by increasing electronic and ionic conductivity, but also the cycling stability by enhancing structural stabilization. Thanks to the benefits of Co-doping, the optimized sample simultaneously achieves high specific capacitance (1579 F/g at 1 A/g), excellent rate capability (78.3% capacity remains when current density increases from 1 to 20 A/g), and decent cycling stability (85.7% capacitance retention after 5000 cycles). At even an ultrahigh mass loading of 15.05 mg/cm2, the specific capacitance remains still significant (1062 F/g at 1 A/g). When coupled with a commercial activated carbon electrode, the resulting asymmetric capacitor delivers a remarkable energy density of 26 Wh/Kg at a power density of 2766 W/Kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study can be available from the corresponding author [LT Kang] upon reasonable request.

References

  1. W. Hong, Y. Li, Y. Wu, G. Li, L. Jia, Mater. Chem. Front. 5, 1438 (2021). https://doi.org/10.1039/d0qm00692k

    Article  CAS  Google Scholar 

  2. R. Nasser, G.-F. Zhang, J.-M. Song, Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136198

    Article  Google Scholar 

  3. G. Ni, F. Qin, Z. Guo, J. Wang, W. Shen, Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2019.135270

    Article  Google Scholar 

  4. Y. Yang, H. Niu, F. Qin et al., Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136667

    Article  Google Scholar 

  5. Z. Yang, Y. Pei, X. Wang, L. Liu, X. Su, Comput. Theor. Chem. 980, 44 (2012). https://doi.org/10.1016/j.comptc.2011.11.008

    Article  CAS  Google Scholar 

  6. J. Wang, J. Li, Y. Liu, M. Wang, H. Cui, J. Mater. Sci. 56, 3011 (2020). https://doi.org/10.1007/s10853-020-05446-0

    Article  CAS  Google Scholar 

  7. Y. Zhao, N. Jiang, X. Zhang et al., Mater. Chem. Phys. 217, 291 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.082

    Article  CAS  Google Scholar 

  8. M. Shi, M. Cui, L. Kang et al., Appl. Surf. Sci. 427, 678 (2018). https://doi.org/10.1016/j.apsusc.2017.09.012

    Article  CAS  Google Scholar 

  9. K. Tao, P. Li, L. Kang et al., J. Power Sources 293, 23 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.004

    Article  CAS  Google Scholar 

  10. H. Liu, Y. Zhang, Q. Ke, K.H. Ho, Y. Hu, JJJoMCA Wang 1, 12962 (2013)

    CAS  Google Scholar 

  11. B Jza, B Sya, B Cla, C My, SBJJoEC Yan (2020) 878

  12. P Chang, F Yang, Y Cen, et al. (2021)

  13. K.R. Sharma, N.S. Negi, J. Supercond. Novel Magn. 34, 633 (2020). https://doi.org/10.1007/s10948-020-05753-2

    Article  CAS  Google Scholar 

  14. Abhik, Banerjee, Sumit, et al. (2014) 6: 18844

  15. B. Li, Y. Shi, K. Huang et al., Small 14, e1703811 (2018). https://doi.org/10.1002/smll.201703811

    Article  CAS  Google Scholar 

  16. M. Shen, S.J. Zhu, Z. Guo et al., Chem. Commun. 56, 3257 (2020). https://doi.org/10.1039/d0cc00749h

    Article  CAS  Google Scholar 

  17. G. Srikesh, A.S. Nesaraj, Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1824147

    Article  Google Scholar 

  18. S. Xu, T. Wang, Y. Ma, W. Jiang, ZJC Yang 10, 4056 (2017)

    CAS  Google Scholar 

  19. Meng, Balamurugan, Jayaraman, Xuyang, N Hoon, J Hee (2017)

  20. BC Kim, CJ Raj, WJ Cho, et al. (2014) 617: 491

  21. DJJoPS Yang (2012) 198: 416

  22. J. Xiao, L. Wan, S. Yang, F. Xiao, SJNL Wang 14, 831 (2014)

    CAS  Google Scholar 

  23. D. Karuppiah, R. Palanisamy, A. Ponnaiah, S. Rengapillai, S. Marimuthu, Int. J. Energy Res. 44, 7591 (2020). https://doi.org/10.1002/er.5492

    Article  CAS  Google Scholar 

  24. Z. Yu, J. Hao, W. Li, H. Liu, Materials. (2019). https://doi.org/10.3390/ma12060843

    Article  Google Scholar 

  25. G. Ali, G. Rahman, K.Y. Chung, Electrochim. Acta 238, 49 (2017). https://doi.org/10.1016/j.electacta.2017.04.006

    Article  CAS  Google Scholar 

  26. D. Zhang, X. Zhang, C. Yao, Y. Peng, C. Wang, YJJoPS Ma 196, 5990 (2011)

    CAS  Google Scholar 

  27. H. Chen, J. Jiang, L. Zhang et al., J. Power Sources 254, 249 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.092

    Article  CAS  Google Scholar 

  28. W Du, X Wang, J Zhan, X Sun, ZJEA Guo (2018) 296

  29. H. Lai, Q. Wu, J. Zhao et al., Energy Environ. Sci. 9, 2053 (2016). https://doi.org/10.1039/c6ee00603e

    Article  CAS  Google Scholar 

  30. C. Tang, G. Li, L. Li, Chem. Lett. 37, 1138 (2008). https://doi.org/10.1246/cl.2008.1138

    Article  CAS  Google Scholar 

  31. M. Guo, J. Balamurugan, X. Li, N.H. Kim, J.H. Lee, Small 13, 1701275 (2017). https://doi.org/10.1002/smll.201701275

    Article  CAS  Google Scholar 

  32. D. Yang, J. Power Sources 198, 416 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.008

    Article  CAS  Google Scholar 

  33. C Tang, G Li, LJCL Li (2008) 37: 1138

  34. K.J.K. Beng Jit Tan, P.M.A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991)

    Article  Google Scholar 

  35. J.P. Bonnelle, J. Grimblot, A. D’Huysser, J. Electron Spectrosc. Relat. Phenom. 7, 151 (1975). https://doi.org/10.1016/0368-2048(75)80047-8

    Article  CAS  Google Scholar 

  36. RBaGD A. M. Venezia, Surface and interface analysis 23, 239 (1995)

  37. WMR C. A. Tolman, W. J. Linn, C. M. King, R. C. Wendt, Inorgan. Chemi. 12, 2770 (1973)

  38. K.S.W. Sing, Pure Appl. Chem. 54, 2201 (1982)

    Article  Google Scholar 

  39. Q. Feng, F. Liu, J. Yuan, Q. Xu, Int. J. Electrochem. Sci. 15, 2863 (2020). https://doi.org/10.20064/2020.04.26

    Article  CAS  Google Scholar 

  40. L. Xie, L. Kang, Y. Li et al., NANO (2017). https://doi.org/10.1142/s1793292017500400

    Article  Google Scholar 

  41. D. Hulicova, M. Kodama, HJCoM Hatori 18, 2318 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Youth Project of Basic Research Program of Shanxi Province (Free Exploration Category, 20210302124358), the Natural Science Foundation of Shandong Province (ZR2020ME024) and National Natural Science Foundation of China (51502194) for financial support.

Funding

The authors thank the Youth Project of Basic Research Program of Shanxi Province (Free Exploration Category, 20210302124358), National Natural Science Foundation of China (51502194), and the Natural Science Foundation of Shandong Province (ZR2020ME024) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Each named author has substantially contributed to conducting the underlying research and drafting this manuscript.

Corresponding author

Correspondence to Litao Kang.

Ethics declarations

Conflict of interest

The named authors have no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Shi, M., Kimura, H. et al. Facile synthesis of cobalt-doped Ni3(NO3)2(OH)4 porous nanosheets for high-performance supercapacitors. J Mater Sci: Mater Electron 33, 17284–17294 (2022). https://doi.org/10.1007/s10854-022-08604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08604-z

Navigation