Skip to main content
Log in

Recent advances in electronic devices for monitoring and modulation of brain

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The brain is actuated by billions of neurons with trillions of interconnections that regulate human behaviors. Understanding the mechanisms of these systems that induce sensory reactions and respond to disease remains one of the greatest challenges in science, engineering, and medicine. Recent advances in nanomaterials and nanotechnologies have led to the extensive research of electronic devices for brain interfaces to better understand the neural activities of the brain’s complex nervous system. The development of sensor devices for monitoring the physiological signals of the brain related to traumatic injury status has accompanied by the progress of electronic neural probes in parallel. In addition, these neurological and stereotactic surgical revolutions hold immense potential for clinical analysis of pharmacological systems within cerebral tissues. Here, we review the progress of electronic devices interfacing with brain in terms of the materials, fabrication technologies, and device designs. Neurophysiological activity can be measured and modulated by brain probes based on newly developed nanofabrication methodologies. Furthermore, in vivo pathological monitoring of the brain and pharmacological assessment has been developed in miniaturized and wireless form. We also consider the key challenges and prospects for further development, and explore the future directions emerging in the latest research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viventi, J.; Kim, D. H.; Vigeland, L.; Frechette, E. S.; Blanco, J. A.; Kim, Y. S.; Avrin, A. E.; Tiruvadi, V. R.; Hwang, S. W.; Vanleer, A. C. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605.

    Article  CAS  Google Scholar 

  2. Uhlhaas, P. J.; Singer, W. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 2006, 52, 155–168.

    Article  CAS  Google Scholar 

  3. Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S. Y. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128.

    Article  Google Scholar 

  4. Schwarzbold, M.; Diaz, A.; Martins, E. T.; Rufino, A.; Amante, L. N.; Thais, M. E.; Quevedo, J.; Hohl, A.; Linhares, M. N.; Walz, R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr. Dis. Treat. 2008, 4, 797–816.

    Google Scholar 

  5. Roberts, I.; Sydenham, E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst. Rev. 2012, 12, CD000033.

    Google Scholar 

  6. Chesnut, R. M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J. et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N. Engl. J. Med. 2012, 367, 2471–2481.

    Article  CAS  Google Scholar 

  7. Shin, J.; Liu, Z. H.; Bai, W. B.; Liu, Y. H.; Yan, Y.; Xue, Y. G.; Kandela, I.; Pezhouh, M.; MacEwan, M. R.; Huang, Y. G. et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899.

    Article  CAS  Google Scholar 

  8. Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. BJA Br. J. Anaesth. 2007, 99, 4–9.

    Article  CAS  Google Scholar 

  9. Bai, W. B.; Shin, J.; Fu, R. X.; Kandela, I.; Lu, D.; Ni, X. Y.; Park, Y.; Liu, Z. H.; Hang, T.; Wu, D. et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 2019, 3, 644–654.

    Article  Google Scholar 

  10. Shalf, J. The future of computing beyond Moore’s Law. Philos. Trans. A Math. Phys. Eng. Sci. 2020, 378, 20190061.

    Google Scholar 

  11. Wang, C. J.; Sim, K.; Chen, J.; Kim, H.; Rao, Z. L.; Li, Y. H.; Chen, W. Q.; Song, J. Z.; Verduzco, R.; Yu, C. J. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 2018, 30, 1706695.

    Article  CAS  Google Scholar 

  12. Um, D. S.; Lim, S.; Lee, Y.; Lee, H.; Kim, H. J.; Yen, W. C.; Chueh, Y. L.; Ko, H. Vacuum-induced wrinkle arrays of InGaAs semiconductor nanomembranes on polydimethylsiloxane microwell arrays. ACS Nano 2014, 8, 3080–3087.

    Article  CAS  Google Scholar 

  13. Wang, J. X.; Cai, G. F.; Li, S. H.; Gao, D. C.; Xiong, J. Q.; Lee, P. S. Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv. Mater. 2018, 30, 1706157.

    Article  CAS  Google Scholar 

  14. Park, J.; Kim, J.; Kim, S. Y.; Cheong, W. H.; Jang, J.; Park, Y. G.; Na, K.; Kim, Y. T.; Heo, J. H.; Lee, C. Y. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 2018, 4, eaap9841.

  15. Yang, Q. S.; Lee, S.; Xue, Y. G.; Yan, Y.; Liu, T. L.; Kang, S. K.; Lee, Y. J.; Lee, S. H.; Seo, M. H.; Lu, D. et al. Materials, mechanics designs, and bioresorbable multisensor platforms for pressure monitoring in the intracranial space. Adv. Funct. Mater. 2020, 30, 1910718.

    Article  CAS  Google Scholar 

  16. Park, J.; Ahn, D. B.; Kim, J.; Cha, E.; Bae, B. S.; Lee, S. Y.; Park, J. U. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 2019, 5, eaay0764.

  17. Kim, J.; Cha, E.; Park, J. U. Recent advances in smart contact lenses. Adv. Mater. Technol. 2020, 5, 1900728.

    Article  CAS  Google Scholar 

  18. Park, Y. G.; Cha, E.; An, H. S.; Lee, K. P.; Song, M. H.; Kim, H. K.; Park, J. U. Wireless phototherapeutic contact lenses and glasses with red light-emitting diodes. Nano Res. 2020, 13, 1347–1353.

    Article  CAS  Google Scholar 

  19. Ku, M.; Kim, J.; Won, J. E.; Kang, W.; Park, Y. G.; Park, J.; Lee, J. H.; Cheon, J.; Lee, H. H.; Park, J. U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 2020, 6, eabb2891.

    Article  CAS  Google Scholar 

  20. Im, C.; Seo, J. M. A review of electrodes for the electrical brain signal recording. Biomed. Eng. Lett. 2016, 6, 104–112.

    Article  Google Scholar 

  21. Fattahi, P.; Yang, G.; Kim, G.; Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014, 26, 1846–1885.

    Article  CAS  Google Scholar 

  22. Hong, G. S.; Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 2019, 20, 330–345.

    Article  CAS  Google Scholar 

  23. Buzsáki, G.; Anastassiou, C. A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420.

    Article  CAS  Google Scholar 

  24. Tallgren, P.; Vanhatalo, S.; Kaila, K.; Voipio, J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin. Neurophysiol. 2005, 116, 799–806.

    Article  CAS  Google Scholar 

  25. Ferree, T. C.; Luu, P.; Russell, G. S.; Tucker, D. M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 2001, 112, 536–544.

    Article  CAS  Google Scholar 

  26. Leleux, P.; Badier, J. M.; Rivnay, J.; Bénar, C.; Hervé, T.; Chauvel, P.; Malliaras, G. G. Conducting polymer electrodes for electroencephalography. Adv. Healthc. Mater. 2014, 3, 490–493.

    Article  CAS  Google Scholar 

  27. Lin, S.; Liu, J. C.; Li, W. Z.; Wang, D.; Huang, Y.; Jia, C.; Li, Z. W.; Murtaza, M.; Wang, H. Y.; Song, J. N. et al. A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett. 2019, 19, 6853–6861.

    Article  CAS  Google Scholar 

  28. Velcescu, A.; Lindley, A.; Cursio, C.; Krachunov, S.; Beach, C.; Brown, C. A.; Jones, A. K. P.; Casson, A. J. Flexible 3D-printed EEG electrodes. Sensors 2019, 19, 1650.

    Article  CAS  Google Scholar 

  29. Tian, L. M.; Zimmerman, B.; Akhtar, A.; Yu, K. J.; Moore, M.; Wu, J.; Larsen, R. J.; Lee, J. W.; Li, J. H.; Liu, Y. H. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194–205.

    Article  Google Scholar 

  30. Norton, J. J. S.; Lee, D. S.; Lee, J. W.; Lee, W.; Kwon, O.; Won, P.; Jung, S. Y.; Cheng, H. Y.; Jeong, J. W.; Akce, A. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, 3920–3925.

    Article  CAS  Google Scholar 

  31. Lacour, S. P.; Benmerah, S.; Tarte, E.; FitzGerald, J.; Serra, J.; McMahon, S.; Fawcett, J.; Graudejus, O.; Yu, Z.; Morrison III, B. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med. Biol. Eng. Comput. 2010, 48, 945–954.

    Article  Google Scholar 

  32. Márton, G.; Tóth, E. Z.; Wittner, L.; Fiáth, R.; Pinke, D.; Orbán, G.; Meszéna, D.; Pál, I.; Győri, E. L.; Bereczki, Z. et al. The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study. Mater. Sci. Eng. C 2020, 112, 110870.

    Article  CAS  Google Scholar 

  33. Chen, H.; Yuan, L.; Song, W.; Wu, Z. K.; Li, D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008, 33, 1059–1087.

    Article  CAS  Google Scholar 

  34. Nicolelis, M. A. L.; Dimitrov, D.; Carmena, J. M.; Crist, R.; Lehew, G.; Kralik, J. D.; Wise, S. P. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl. Acad. Sci. USA 2003, 100, 11041–11046.

    Article  CAS  Google Scholar 

  35. Wise, K. D.; Najafi, K. Microfabrication techniques for integrated sensors and microsystems. Science 1991, 254, 1335–1342.

    Article  CAS  Google Scholar 

  36. Yeager, J. D.; Phillips, D. J.; Rector, D. M.; Bahr, D. F. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J. Neurosci. Methods 2008, 173, 279–285.

    Article  Google Scholar 

  37. Kim, D. H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y. S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511–517.

    Article  CAS  Google Scholar 

  38. Khodagholy, D.; Gelinas, J. N.; Thesen, T.; Doyle, W.; Devinsky, O.; Malliaras, G. G.; Buzsáki, G. NeuroGrid: Recording action potentials from the surface of the brain. Nat. Neurosci. 2015, 18, 310–315.

    Article  CAS  Google Scholar 

  39. Li, J. H.; Song, E. M.; Chiang, C. H.; Yu, K. J.; Koo, J.; Du, H. N.; Zhong, Y. S.; Hill, M.; Wang, C.; Zhang, J. Z. et al. Conductively coupled flexible silicon electronic systems for chronic neural electro-physiology. Proc. Natl. Acad. Sci. USA 2018, 115, E9542–E9549.

    Article  CAS  Google Scholar 

  40. Chiang, C. H.; Won, S. M.; Orsborn, A. L.; Yu, K. J.; Trumpis, M.; Bent, B.; Wang, C.; Xue, Y. G.; Min, S.; Woods, V. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 2020, 12, eaay4682.

    Article  Google Scholar 

  41. Jang, J.; Kim, H.; Ji, S.; Kim, H. J.; Kang, M. S.; Kim, T. S.; Won, J. E.; Lee, J. H.; Cheon, J.; Kang, K. et al. Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 2020, 20, 66–74.

    Article  CAS  Google Scholar 

  42. Jang, J.; Oh, B.; Jo, S.; Park, S.; An, H. S.; Lee, S.; Cheong, W. H.; Yoo, S.; Park, J. U. Human-interactive, active-matrix displays for visualization of tactile pressures. Adv. Mater. Technol. 2019, 4, 1900082.

    Article  CAS  Google Scholar 

  43. Wark, H. A. C.; Sharma, R.; Mathews, K. S.; Fernandez, E.; Yoo, J.; Christensen, B.; Tresco, P.; Rieth, L.; Solzbacher, F.; Normann, R. A. et al. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 2013, 10, 045003.

    Article  CAS  Google Scholar 

  44. Won, S. M.; Song, E. M.; Zhao, J. N.; Li, J. H.; Rivnay, J.; Rogers, J. A. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 2018, 30, 1800534.

    Article  CAS  Google Scholar 

  45. Jun, J. J.; Steinmetz, N. A.; Siegle, J. H.; Denman, D. J.; Bauza, M.; Barbarits, B.; Lee, A. K.; Anastassiou, C. A.; Andrei, A.; Aydin, Ç. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232–236.

    Article  CAS  Google Scholar 

  46. Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629–636.

    Article  CAS  Google Scholar 

  47. Fu, T. M.; Hong, G. S.; Zhou, T.; Schuhmann, T. G.; Viveros, R. D.; Lieber, C. M. Stable long-term chronic brain mapping at the singleneuron level. Nat. Methods 2016, 13, 875–882.

    Article  CAS  Google Scholar 

  48. Yang, Q. R.; Wu, B. C.; Eles, J. R.; Vazquez, A. L.; Kozai, T. D. Y.; Cui, X. T. Zwitterionic polymer coating suppresses microglial encapsulation to neural implants in vitro and in vivo. Adv. Biosyst. 2020, 4, 1900287.

    Article  CAS  Google Scholar 

  49. Zhang, W. G.; Zhou, X. H.; He, Y. X.; Xu, L. Y.; Xie, J. Implanting mechanics of PEG/DEX coated flexible neural probe: Impacts of fabricating methods. Biomed. Microdevices 2021, 23, 17.

    Article  CAS  Google Scholar 

  50. Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron 2012, 73, 862–885.

    Article  CAS  Google Scholar 

  51. Berridge, M. J.; Lipp, P.; Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21.

    Article  CAS  Google Scholar 

  52. Oh, J.; Lee, C.; Kaang, B. K. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors. Korean J. Physiol. Pharmacol. 2019, 23, 237–249.

    Article  CAS  Google Scholar 

  53. Chemla, S.; Chavane, F. Voltage-sensitive dye imaging: Technique review and models. J. Physiol. Paris 2010, 104, 40–50.

    Article  CAS  Google Scholar 

  54. Kim, C. K.; Yang, S. J.; Pichamoorthy, N.; Young, N. P.; Kauvar, I.; Jennings, J. H.; Lerner, T. N.; Berndt, A.; Lee, S. Y.; Ramakrishnan, C. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 2016, 13, 325–328.

    Article  CAS  Google Scholar 

  55. Pozzan, T.; Arslan, P.; Tsien, R. Y.; Rink, T. J. Anti-immunoglobulin, cytoplasmic free calcium, and capping in B lymphocytes. J. Cell Biol. 1982, 94, 335–340.

    Article  CAS  Google Scholar 

  56. Baker, B. J.; Kosmidis, E. K.; Vucinic, D.; Falk, C. X.; Cohen, L. B.; Djurisic, M.; Zecevic, D. Imaging brain activity with voltage- and calcium-sensitive dyes. Cell. Mol. Neurobiol. 2005, 25, 245–282.

    Article  CAS  Google Scholar 

  57. Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76.

    Article  CAS  Google Scholar 

  58. Burton, A.; Obaid, S. N.; Vázquez-Guardado, A.; Schmit, M. B.; Stuart, T.; Cai, L.; Chen, Z. Y.; Kandela, I.; Haney, C. R.; Waters, E. A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 2835–2845.

    Article  CAS  Google Scholar 

  59. Lu, L. Y.; Gutruf, P.; Xia, L.; Bhatti, D. L.; Wang, X. Y.; Vazquez-Guardado, A.; Ning, X.; Shen, X. R.; Sang, T.; Ma, R. X. et al. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proc. Natl. Acad. Sci. USA 2018, 115, E1374–E1383.

    Article  CAS  Google Scholar 

  60. Adelsberger, H.; Garaschuk, O.; Konnerth, A. Cortical calcium waves in resting newborn mice. Nat. Neurosci. 2005, 8, 988–990.

    Article  CAS  Google Scholar 

  61. Lütcke, H.; Murayama, M.; Hahn, T.; Margolis, D. J.; Astori, S.; Borgloh, S. M. Z. A.; Göbel, W.; Yang, Y.; Tang, W. N.; Kügler, S. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 2010, 4, 9.

    Google Scholar 

  62. Sych, Y.; Chernysheva, M.; Sumanovski, L. T.; Helmchen, F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat. Methods 2019, 16, 553–560.

    Article  CAS  Google Scholar 

  63. Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W. et al. Randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908.

    Article  CAS  Google Scholar 

  64. Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 2019, 15, 234–242.

    Article  Google Scholar 

  65. Mayberg, H. S.; Lozano, A. M.; Voon, V.; McNeely, H. E.; Seminowicz, D.; Hamani, C.; Schwalb, J. M.; Kennedy, S. H. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45, 651–660.

    Article  CAS  Google Scholar 

  66. Perlmutter, J. S.; Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 2006, 29, 229–257.

    Article  CAS  Google Scholar 

  67. Yuk, H.; Lu, B. Y.; Zhao, X. H. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667.

    Article  CAS  Google Scholar 

  68. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309.

    Article  CAS  Google Scholar 

  69. Merrill, D. R.; Bikson, M.; Jefferys, J. G. R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198.

    Article  Google Scholar 

  70. Rousche, P. J.; Normann, R. A. Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 1998, 82, 1–15.

    Article  CAS  Google Scholar 

  71. Wise, K. D.; Anderson, D. J.; Hetke, J. F.; Kipke, D. R.; Najafi, K. Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proc. IEEE 2004, 92, 76–97.

    Article  CAS  Google Scholar 

  72. Johnson, M. D.; Lim, H. H.; Netoff, T. I.; Connolly, A. T.; Johnson, N.; Roy, A.; Holt, A.; Lim, K. O.; Carey, J. R.; Vitek, J. L. et al. Neuromodulation for brain disorders: Challenges and opportunities. IEEE Trans. Biomed. Eng. 2013, 60, 610–624.

    Article  Google Scholar 

  73. Salatino, J. W.; Ludwig, K. A.; Kozai, T. D. Y.; Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 2017, 1, 862–877.

    Article  CAS  Google Scholar 

  74. Minev, I. R.; Musienko, P.; Hirsch, A.; Barraud, Q.; Wenger, N.; Moraud, E. M.; Gandar, J.; Capogrosso, M.; Milekovic, T.; Asboth, L. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 2015, 347, 159–163.

    Article  CAS  Google Scholar 

  75. Vachicouras, N.; Tarabichi, O.; Kanumuri, V. V.; Tringides, C. M.; Macron, J.; Fallegger, F.; Thenaisie, Y.; Epprecht, L.; McInturff, S.; Qureshi, A. A. et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci. Transl. Med. 2019, 11, eaax9487.

  76. Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L. K.; Li, M.; Wang, S. D.; Ma, R.; Jin, S. H.; Kang, Z. et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778.

    Article  CAS  Google Scholar 

  77. Boehler, C.; Vieira, D. M.; Egert, U.; Asplund, M. NanoPt—A nanostructured electrode coating for neural recording and microstimulation. ACS Appl. Mater. Interfaces 2020, 12, 14855–14865.

    Article  CAS  Google Scholar 

  78. Abbott, J.; Ye, T. Y.; Krenek, K.; Gertner, R. S.; Ban, S.; Kim, Y.; Qin, L.; Wu, W. X.; Park, H.; Ham, D. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 2020, 4, 232–241.

    Article  CAS  Google Scholar 

  79. Chen, C.; Ruan, S. C.; Bai, X.; Lin, C. M.; Xie, C. G.; Lee, I. S. Patterned iridium oxide film as neural electrode interface: Biocompatibility and improved neurite outgrowth with electrical stimulation. Mater. Sci. Eng. C 2019, 103, 109865.

    Article  CAS  Google Scholar 

  80. Chen, N.; Tian, L. L.; Patil, A. C.; Peng, S. J.; Yang, I. H.; Thakor, N. V.; Ramakrishna, S. Neural interfaces engineered via micro- and nanostructured coatings. Nano Today 2017, 14, 59–83.

    Article  CAS  Google Scholar 

  81. Lu, L. L.; Fu, X. F.; Liew, Y.; Zhang, Y. Y.; Zhao, S. Y.; Xu, Z.; Zhao, J. N.; Li, D.; Li, Q. W.; Stanley, G. B. et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett. 2019, 19, 1577–1586.

    Article  CAS  Google Scholar 

  82. Wang, K. Z.; Frewin, C. L.; Esrafilzadeh, D.; Yu, C. C.; Wang, C. Y.; Pancrazio, J. J.; Romero-Ortega, M.; Jalili, R.; Wallace, G. Highperformance graphene-fiber-based neural recording microelectrodes. Adv. Mater. 2019, 31, 1805867.

    Article  CAS  Google Scholar 

  83. Gutruf, P.; Yin, R. T.; Lee, K. B.; Ausra, J.; Brennan, J. A.; Qiao, Y.; Xie, Z. Q.; Peralta, R.; Talarico, O.; Murillo, A. et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742.

    Article  CAS  Google Scholar 

  84. Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268.

    Article  CAS  Google Scholar 

  85. Won, S. M.; Song, E. M.; Reeder, J. T.; Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 2020, 181, 115–135.

    Article  CAS  Google Scholar 

  86. Pashaie, R.; Anikeeva, P.; Lee, J. H.; Prakash, R.; Yizhar, O.; Prigge, M.; Chander, D.; Richner, T. J.; Williams, J. Optogenetic brain interfaces. IEEE Rev. Biomed. Eng. 2014, 7, 3–30.

    Article  Google Scholar 

  87. Gradinaru, V.; Thompson, K. R.; Zhang, F.; Mogri, M.; Kay, K.; Schneider, M. B.; Deisseroth, K. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 2007, 27, 14231–14238.

    Article  CAS  Google Scholar 

  88. Williams, J. C.; Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 2013, 5, 177ps6.

    Article  CAS  Google Scholar 

  89. Wang, L. L.; Zhong, C.; Ke, D. N.; Ye, F. M.; Tu, J.; Wang, L. P.; Lu, Y. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater. 2018, 6, 1800427.

    Article  CAS  Google Scholar 

  90. Kim, D.; Yokota, T.; Suzuki, T.; Lee, S.; Woo, T.; Yukita, W.; Koizumi, M.; Tachibana, Y.; Yawo, H.; Onodera, H. et al. Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc. Natl. Acad. Sci. USA 2020, 117, 21138–21146.

    Article  CAS  Google Scholar 

  91. Wu, F.; Stark, E.; Ku, P. C.; Wise, K. D.; Buzsáki, G.; Yoon, E. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 2015, 88, 1136–1148.

    Article  CAS  Google Scholar 

  92. Kim, T. I.; McCall, J. G.; Jung, Y. H.; Huang, X.; Siuda, E. R.; Li, Y. H.; Song, J. Z.; Song, Y. M.; Pao, H. A.; Kim, P. H. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 2013, 340, 211–216.

    Article  CAS  Google Scholar 

  93. Qazi, R.; Gomez, A. M.; Castro, D. C.; Zou, Z. N.; Sim, J. Y.; Xiong, Y. Y.; Abdo, J.; Kim, C. Y.; Anderson, A.; Lohner, F. et al. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation. Nat. Biomed. Eng. 2019, 3, 655–669.

    Article  Google Scholar 

  94. Zhang, Y.; Castro, D. C.; Han, Y.; Wu, Y. X.; Guo, H. X.; Weng, Z. Y.; Xue, Y. G.; Ausra, J.; Wang, X. J.; Li, R. et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 21427–21437.

    Article  CAS  Google Scholar 

  95. Jeong, J. W.; McCall, J. G.; Shin, G.; Zhang, Y. H.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J. Y.; Jang, K. I.; Shi, Y. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 2015, 162, 662–674.

    Article  CAS  Google Scholar 

  96. Gutruf, P.; Krishnamurthi, V.; Vázquez-Guardado, A.; Xie, Z. Q.; Banks, A.; Su, C. J.; Xu, Y. S.; Haney, C. R.; Waters, E. A.; Kandela, I. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 2018, 1, 652–660.

    Article  Google Scholar 

  97. Zhang, X.; Medow, J. E.; Iskandar, B. J.; Wang, F.; Shokoueinejad, M.; Koueik, J.; Webster, J. G. Invasive and noninvasive means of measuring intracranial pressure: A review. Physiol. Meas. 2017, 38, R143–R182.

    Article  Google Scholar 

  98. Kim, M. O.; Eide, P. K.; O’Rourke, M. F.; Adji, A.; Avolio, A. P. Intracranial pressure waveforms are more closely related to central aortic than radial pressure waveforms: Implications for pathophysiology and therapy. In Intracranial Pressure and Brain Monitoring XV; Ang, B. T., Ed.; Springer: Cham, 2016; pp 61–64.

    Chapter  Google Scholar 

  99. Evensen, K. B.; O’Rourke, M.; Prieur, F.; Holm, S.; Eide, P. K. Non-invasive estimation of the intracranial pressure waveform from the central arterial blood pressure waveform in idiopathic normal pressure hydrocephalus patients. Sci. Rep. 2018, 8, 4714.

    Article  CAS  Google Scholar 

  100. Gosling, R. G.; King, D. H. The role of measurement in peripheral vascular surgery: Arterial assessment by Doppler-shift ultrasound. Proc. R. Soc. Med. 1974, 67, 447–449.

    CAS  Google Scholar 

  101. Behrens, A.; Lenfeldt, N.; Ambarki, K.; Malm, J.; Eklund, A.; Koskinen, L. O. Transcranial Doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery 2010, 66, 1050–1057.

    Article  Google Scholar 

  102. Evensen, K. B.; Eide, P. K. Measuring intracranial pressure by invasive, less invasive or non-invasive means: Limitations and avenues for improvement. Fluids Barriers CNS 2020, 17, 34.

    Article  Google Scholar 

  103. Marchbanks, R. J.; Reid, A.; Martin, A. M.; Brightwell, A. P.; Bateman, D. The effect of raised intracranial pressure on intracochlear fluid pressure: Three case studies. Br. J. Audiol. 1987, 21, 127–130.

    Article  CAS  Google Scholar 

  104. Evensen, K. B.; Paulat, K.; Prieur, F.; Holm, S.; Eide, P. K. Utility of the tympanic membrane pressure waveform for non-invasive estimation of the intracranial pressure waveform. Sci. Rep. 2018, 8, 15776.

    Article  CAS  Google Scholar 

  105. Maissan, I. M.; Dirven, P. J. A. C.; Haitsma, I. K.; Hoeks, S. E.; Gommers, D.; Stolker, R. J. Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J. Neurosurg. 2015, 123, 743–747.

    Article  Google Scholar 

  106. Kerscher, S. R.; Schöni, D.; Neunhoeffer, F.; Wolff, M.; Haas-Lude, K.; Bevot, A.; Schuhmann, M. U. The relation of optic nerve sheath diameter (ONSD) and intracranial pressure (ICP) in pediatric neurosurgery practice—Part II: Influence of wakefulness, method of ICP measurement, intra-individual ONSD-ICP correlation and changes after therapy. Child’s Nerv. Syst. 2020, 36, 107–115.

    Article  Google Scholar 

  107. Zoerle, T.; Caccioppola, A.; D’Angelo, E.; Carbonara, M.; Conte, G.; Avignone, S.; Zanier, E. R.; Birg, T.; Ortolano, F.; Triulzi, F. et al. Optic nerve sheath diameter is not related to intracranial pressure in subarachnoid hemorrhage patients. Neurocrit. Care 2020, 33, 491–498.

    Article  Google Scholar 

  108. Naldi, A.; Provero, P.; Vercelli, A.; Bergui, M.; Mazzeo, A. T.; Cantello, R.; Tondo, G.; Lochner, P. Optic nerve sheath diameter asymmetry in healthy subjects and patients with intracranial hypertension. Neurol. Sci. 2020, 41, 329–333.

    Article  Google Scholar 

  109. Heldt, T.; Zoerle, T.; Teichmann, D.; Stocchetti, N. Intracranial pressure and intracranial elastance monitoring in neurocritical care. Annu. Rev. Biomed. Eng. 2019, 21, 523–549.

    Article  CAS  Google Scholar 

  110. Pappu, S.; Lerma, J.; Khraishi, T. Brain CT to assess intracranial pressure in patients with traumatic brain injury. J. Neuroimaging 2016, 26, 37–40.

    Article  Google Scholar 

  111. Jaeger, M.; Khoo, A. K.; Conforti, D. A.; Cuganesan, R. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus. J. Clin. Neurosci. 2016, 33, 169–172.

    Article  Google Scholar 

  112. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS; Bratton, S. L.; Chestnut, R. M.; Ghajar, J.; McConnell Hammond, F. F.; Harris, O. A.; Hartl, R. et al. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J. Neurotrauma 2007, 24 Suppl 1, S45–S54.

    Google Scholar 

  113. Yau, Y. H.; Piper, I. R.; Clutton, R. E.; Whittle, I. R. Experimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor. Technical note. J. Neurosurg. 2000, 93, 1072–1077.

    Article  CAS  Google Scholar 

  114. Raboel, P. H.; Bartek, J.; Andresen, M.; Bellander, B. M.; Romner, B. Intracranial pressure monitoring: Invasive versus non-invasive methods—A review. Crit. Care Res. Pract. 2012, 2012, 950393.

    CAS  Google Scholar 

  115. Stendel, R.; Heidenreich, J.; Schilling, A.; Akhavan-Sigari, R.; Kurth, R.; Picht, T.; Pietilä, T.; Suess, O.; Kern, C.; Meisel, J. et al. Clinical evaluation of a new intracranial pressure monitoring device. Acta Neurochir. (Wien) 2003, 145, 185–193.

    Article  CAS  Google Scholar 

  116. Ji, S. Y.; Jang, J.; Hwang, J. C.; Lee, Y.; Lee, J. H.; Park, J. U. Amorphous oxide semiconductor transistors with air dielectrics for transparent and wearable pressure sensor arrays. Adv. Mater. Technol. 2020, 5, 1900928.

    Article  CAS  Google Scholar 

  117. Jang, J.; Jun, Y. S.; Seo, H.; Kim, M.; Park, J. U. Motion detection using tactile sensors based on pressure-sensitive transistor arrays. Sensors 2020, 20, 3624.

    Article  Google Scholar 

  118. Park, Y. G.; Lee, S.; Park, J. U. Recent progress in wireless sensors for wearable electronics. Sensors 2019, 19, 4353.

    Article  Google Scholar 

  119. Jang, J.; Kim, H.; Song, Y. M.; Park, J. U. Implantation of electronic visual prosthesis for blindness restoration. Opt. Mater. Express 2019, 9, 3878–3894.

    Article  Google Scholar 

  120. Coyle, P. Middle cerebral artery occlusion in the young rat. Stroke 1982, 13, 855–859.

    Article  CAS  Google Scholar 

  121. Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.

    Article  CAS  Google Scholar 

  122. Shin, J.; Yan, Y.; Bai, W. B.; Xue, Y. G.; Gamble, P.; Tian, L. M.; Kandela, I.; Haney, C. R.; Spees, W.; Lee, Y. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 2019, 3, 37–46.

    Article  CAS  Google Scholar 

  123. Yu, L.; Kim, B. J.; Meng, E. Chronically implanted pressure sensors: Challenges and state of the field. Sensors 2014, 14, 20620–20644.

    Article  Google Scholar 

  124. Fang, H.; Zhao, J. N.; Yu, K. J.; Song, E. M.; Farimani, A. B.; Chiang, C. H.; Jin, X.; Xue, Y. G.; Xu, D.; Du, W. B. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl. Acad. Sci. USA 2016, 113, 11682–11687.

    Article  CAS  Google Scholar 

  125. Xu, K. D.; Li, S. J.; Dong, S. R.; Zhang, S. M.; Pan, G.; Wang, G. M.; Shi, L.; Guo, W.; Yu, C. N.; Luo, J. K. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Healthc. Mater. 2019, 8, 1801649.

    Article  CAS  Google Scholar 

  126. Omidbeigi, M.; Mousavi, M. S.; Meknatkhah, S.; Edalatfar, M.; Bari, A.; Sharif-Alhoseini, M. Telemetric intracranial pressure monitoring: A systematic review. Neurocrit. Care 2021, 34, 291–300.

    Article  Google Scholar 

  127. Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. N. Continuous wireless pressure monitoring and mapping with ultrasmall passive sensors for health monitoring and critical care. Nat. Commun. 2014, 5, 5028.

    Article  CAS  Google Scholar 

  128. Lu, D.; Yan, Y.; Deng, Y. J.; Yang, Q. S.; Zhao, J.; Seo, M. H.; Bai, W. B.; MacEwan, M. R.; Huang, Y. G.; Ray, W. Z. et al. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 2020, 30, 2003754.

    Article  CAS  Google Scholar 

  129. Eftekhari, S.; Westgate, C. S. J.; Johansen, K. P.; Bruun, S. R.; Jensen, R. H. Long-term monitoring of intracranial pressure in freely-moving rats; impact of different physiological states. Fluids Barriers CNS 2020, 17, 39.

    Article  CAS  Google Scholar 

  130. Dong, X. W. Current strategies for brain drug delivery. Theranostics 2018, 8, 1481–1493.

    Article  CAS  Google Scholar 

  131. Haumann, R.; Videira, J. C.; Kaspers, G. J. L.; van Vuurden, D. G.; Hulleman, E. Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS Drugs 2020, 34, 1121–1131.

    Article  Google Scholar 

  132. Chen, Y.; Dalwadi, G.; Benson, H. A. E. Drug delivery across the blood-brain barrier. Curr. Drug Deliv. 2004, 1, 361–376.

    Article  CAS  Google Scholar 

  133. Patel, M. M.; Patel, B. M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs 2017, 31, 109–133.

    Article  CAS  Google Scholar 

  134. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 2004, 5, 347–360.

    Article  CAS  Google Scholar 

  135. Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53.

    Article  CAS  Google Scholar 

  136. Lu, C. T.; Zhao, Y. Z.; Wong, H. L.; Cai, J.; Peng, L.; Tian, X. Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomedicine 2014, 9, 2241–2257.

    Article  Google Scholar 

  137. Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076–2080.

    Article  CAS  Google Scholar 

  138. Lonser, R. R.; Sarntinoranont, M.; Morrison, P. F.; Oldfield, E. H. Convection-enhanced delivery to the central nervous system. J. Neurosurg. 2015, 122, 697–706.

    Article  Google Scholar 

  139. Greig, N. H. Optimizing drug delivery to brain tumors. Cancer Treat. Rev. 1987, 14, 1–28.

    Article  CAS  Google Scholar 

  140. Harbaugh, R. E.; Saunders, R. L.; Reeder, R. F. Use of implantable pumps for central nervous system drug infusions to treat neurological disease. Neurosurgery 1988, 23, 693–698.

    Article  CAS  Google Scholar 

  141. DiMeco, F.; Li, K. W.; Tyler, B. M.; Wolf, A. S.; Brem, H.; Olivi, A. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats. J. Neurosurg. 2002, 97, 1173–1178.

    Article  CAS  Google Scholar 

  142. Neuwelt, E. A. Mechanisms of disease: The blood-brain barrier. Neurosurgery 2004, 54, 131–142.

    Article  Google Scholar 

  143. Sim, J. Y.; Haney, M. P.; Park, S. I.; McCall, J. G.; Jeong, J.W. Microfluidic neural probes: In vivo tools for advancing neuroscience. Lab Chip 2017, 17, 1406–1435.

    Article  CAS  Google Scholar 

  144. Canales, A.; Jia, X. T.; Froriep, U. P.; Koppes, R. A.; Tringides, C. M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 2015, 33, 277–284.

    Article  CAS  Google Scholar 

  145. Jeong, J. W.; McCall, J. G.; Zhang, Y.; Huang, Y.; Bruchas, M. R.; Rogers, J. A. Soft microfluidic neural probes for wireless drug delivery in freely behaving mice. In Proceedings of the 2015 Transducers — 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 2015, pp 2264–2267.

  146. Ramadi, K. B.; Bashyam, A.; Frangieh, C. J.; Rousseau, E. B.; Cotler, M. J.; Langer, R.; Graybiel, A. M.; Cima, M. J. Computationally guided intracerebral drug delivery via chronically implanted microdevices. Cell Rep. 2020, 31, 107734.

    Article  CAS  Google Scholar 

  147. Altuna, A.; Bellistri, E.; Cid, E.; Aivar, P.; Gal, B.; Berganzo, J.; Gabriel, G.; Guimerà, A.; Villa, R.; Fernandez, L. J. et al. SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 2013, 13, 1422–1430.

    Article  CAS  Google Scholar 

  148. Cotler, M. J.; Rousseau, E. B.; Ramadi, K. B.; Fang, J.; Graybiel, A. M.; Langer, R.; Cima, M. J. Steerable microinvasive probes for localized drug delivery to deep tissue. Small 2019, 15, 1901459.

    Article  CAS  Google Scholar 

  149. McCall, J. G.; Qazi, R.; Shin, G.; Li, S.; Ikram, M. H.; Jang, K. I.; Liu, Y. H.; Al-Hasani, R.; Bruchas, M. R.; Jeong, J. W. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 2017, 12, 219–237.

    Article  CAS  Google Scholar 

  150. Shin, H.; Lee, H. J.; Chae, U.; Kim, H.; Kim, J.; Choi, N.; Woo, J.; Cho, Y.; Justin Lee, C.; Yoon, E. S. et al. Neural probes with multi-drug delivery capability. Lab Chip 2015, 15, 3730–3737.

    Article  CAS  Google Scholar 

  151. Shin, H.; Son, Y.; Chae, U.; Kim, J.; Choi, N.; Lee, H. J.; Woo, J.; Cho, Y.; Yang, S. H.; Lee, C. J. et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat. Commun. 2019, 10, 3777.

    Article  CAS  Google Scholar 

  152. Cai, D. J.; Aharoni, D.; Shuman, T.; Shobe, J.; Biane, J.; Song, W. L.; Wei, B.; Veshkini, M.; La-Vu, M.; Lou, J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 2016, 534, 115–118.

    Article  CAS  Google Scholar 

  153. Lee, H. J.; Son, Y.; Kim, D.; Kim, Y. K.; Choi, N.; Yoon, E. S.; Cho, I. J. A new thin silicon microneedle with an embedded microchannel for deep brain drug infusion. Sens. Actuators B Chem. 2015, 209, 413–422.

    Article  CAS  Google Scholar 

  154. Parada, M. A.; Puig de Parada, M.; Hoebel, B. G. A new triple-channel swivel for fluid delivery in the range of intracranial (10 nL) and intravenous (100 µL) self-administration volumes and also suitable for microdialysis. J. Neurosci. Methods 1994, 54, 1–8.

    Article  CAS  Google Scholar 

  155. Spieth, S.; Schumacher, A.; Kallenbach, C.; Messner, S.; Zengerle, R. The NeuroMedicator—A micropump integrated with silicon microprobes for drug delivery in neural research. J. Micromech. Microeng. 2012, 22, 065020.

    Article  CAS  Google Scholar 

  156. Dagdeviren, C.; Ramadi, K. B.; Joe, P.; Spencer, K.; Schwerdt, H. N.; Shimazu, H.; Delcasso, S.; Amemori, K. I.; Nunez-Lopez, C.; Graybiel, A. M. et al. Miniaturized neural system for chronic, local intracerebral drug delivery. Sci. Transl. Med. 2018, 10, eaan2742.

    Article  CAS  Google Scholar 

  157. Noh, K. N.; Park, S. I.; Qazi, R.; Zou, Z. N.; Mickle, A. D.; Grajales-Reyes, J. G.; Jang, K. I.; Gereau IV, R. W.; Xiao, J. L.; Rogers, J. A. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 2018, 14, 1702479.

    Article  CAS  Google Scholar 

  158. Roh, D.; Park, S. Brain multimodality monitoring: Updated perspectives. Curr. Neurol. Neurosci. Rep. 2016, 16, 56.

    Article  Google Scholar 

  159. Tisdall, M. M.; Smith, M. Multimodal monitoring in traumatic brain injury: Current status and future directions. BJA Br. J. Anaesth. 2007, 99, 61–67.

    Article  CAS  Google Scholar 

  160. González, R. G. Imaging-guided acute ischemic stroke therapy: From “time is brain” to “physiology is brain”. AJNR Am. J. Neuroradiol. 2006, 27, 728–735.

    Google Scholar 

  161. Saver, J. L.; Smith, E. E.; Fonarow, G. C.; Reeves, M. J.; Zhao, X.; Olson, D. M.; Schwamm, L. H. The “golden hour” and acute brain ischemia. Stroke 2010, 41, 1431–1439.

    Article  Google Scholar 

  162. Zhao, Z. T.; Luan, L.; Wei, X. L.; Zhu, H. L.; Li, X.; Lin, S. Q.; Siegel, J. J.; Chitwood, R. A.; Xie, C. Nanoelectronic coating enabled versatile multifunctional neural probes. Nano Lett. 2017, 17, 4588–4595.

    Article  CAS  Google Scholar 

  163. Park, S.; Guo, Y. Y.; Jia, X. T.; Choe, H. K.; Grena, B.; Kang, J.; Park, J.; Lu, C.; Canales, A.; Chen, R. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 2017, 20, 612–619.

    Article  CAS  Google Scholar 

  164. Mickle, A. D.; Won, S. M.; Noh, K. N.; Yoon, J.; Meacham, K. W.; Xue, Y. G.; McIlvried, L. A.; Copits, B. A.; Samineni, V. K.; Crawford, K. E. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019, 565, 361–365.

    Article  CAS  Google Scholar 

  165. An, H. S.; Park, Y. G.; Kim, K.; Nam, Y. S.; Song, M. H.; Park, J. U. High-resolution 3D printing of freeform, transparent displays in ambient air. Adv. Sci. 2019, 6, 1901603.

    Article  CAS  Google Scholar 

  166. Cheong, W. H.; Oh, B.; Kim, S. H.; Jang, J.; Ji, S.; Lee, S.; Cheon, J.; Yoo, S.; Lee, S. Y.; Park, J. U. Platform for wireless pressure sensing with built-in battery and instant visualization. Nano Energy 2019, 62, 230–238.

    Article  CAS  Google Scholar 

  167. Jo, Y.; Young Kim, J.; Kim, S. Y.; Seo, Y. H.; Jang, K. S.; Yeon Lee, S.; Jung, S.; Ryu, B. H.; Kim, H. S.; Park, J. U. et al. 3D-printable, highly conductive hybrid composites employing chemically-reinforced, complex dimensional fillers and thermoplastic triblock copolymers. Nanoscale 2017, 9, 5072–5084.

    Article  CAS  Google Scholar 

  168. Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.

    Article  CAS  Google Scholar 

  169. Tao, H.; Hwang, S. W.; Marelli, B.; An, B.; Moreau, J. E.; Yang, M.; Brenckle, M. A.; Kim, S.; Kaplan, D. L.; Rogers, J. A. et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. USA 2014, 111, 17385–17389.

    Article  CAS  Google Scholar 

  170. Bettinger, C. J.; Bao, Z. N. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22, 651–655.

    Article  CAS  Google Scholar 

  171. Irimia-Vladu, M.; Glowacki, E. D.; Troshin, P. A.; Schwabegger, G.; Leonat, L.; Susarova, D. K.; Krystal, O.; Ullah, M.; Kanbur, Y.; Bodea, M. A. et al. Indigo—A natural pigment for high performance Ambipolar organic field effect transistors and circuits. Adv. Mater. 2012, 24, 375–380.

    Article  CAS  Google Scholar 

  172. Lei, T.; Guan, M.; Liu, J.; Lin, H. C.; Pfattner, R.; Shaw, L.; McGuire, A. F.; Huang, T. C.; Shao, L. L.; Cheng, K. T. et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl. Acad. Sci. USA 2017, 114, 5107–5112.

    Article  CAS  Google Scholar 

  173. Omenetto, F. G.; Kaplan, D. L. A new route for silk. Nat. Photonics 2008, 2, 641–643.

    Article  CAS  Google Scholar 

  174. Jin, H. J.; Park, J.; Karageorgiou, V.; Kim, U. J.; Valluzzi, R.; Cebe, P.; Kaplan, D. L. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 2005, 15, 1241–1247.

    Article  CAS  Google Scholar 

  175. Lu, Q.; Hu, X.; Wang, X. Q.; Kluge, J. A.; Lu, S. Z.; Cebe, P.; Kaplan, D. L. Water-insoluble silk films with silk I structure. Acta Biomater. 2010, 6, 1380–1387.

    Article  CAS  Google Scholar 

  176. Jiang, C.; Wang, X.; Gunawidjaja, R.; Lin, Y. H.; Gupta, M. K.; Kaplan, D. L.; Naik, R. R.; Tsukruk, V. V. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 2007, 17, 2229–2237.

    Article  CAS  Google Scholar 

  177. Perry, H.; Gopinath, A.; Kaplan, D. L.; Dal Negro, L.; Omenetto, F. G. Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 2008, 20, 3070–3072.

    Article  CAS  Google Scholar 

  178. Zhou, Y. H.; Khan, T. M.; Liu, J. C.; Fuentes-Hernandez, C.; Shim, J. W.; Najafabadi, E.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 2014, 15, 661–666.

    Article  CAS  Google Scholar 

  179. Jung, Y. H.; Chang, T. H.; Zhang, H. L.; Yao, C. H.; Zheng, Q. F.; Yang, V. W.; Mi, H. Y.; Kim, M.; Cho, S. J.; Park, D. W. et al. Highperformance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015, 6, 7170.

    Article  Google Scholar 

  180. Huang, X.; Liu, Y. H.; Hwang, S. W.; Kang, S. K.; Patnaik, D.; Cortes, J. F.; Rogers, J. A. Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 2014, 26, 7371–7377.

    Article  CAS  Google Scholar 

  181. Chang, J. K.; Fang, H.; Bower, C. A.; Song, E. M.; Yu, X. G.; Rogers, J. A. Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl. Acad. Sci. USA 2017, 114, E5522–E5529.

    Article  CAS  Google Scholar 

  182. Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. Highperformance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.

    Article  CAS  Google Scholar 

  183. Kang, S. K.; Hwang, S. W.; Yu, S.; Seo, J. H.; Corbin, E. A.; Shin, J.; Wie, D. S.; Bashir, R.; Ma, Z. Q.; Rogers, J. A. Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 2015, 25, 1789–1797.

    Article  CAS  Google Scholar 

  184. Yin, L.; Cheng, H. Y.; Mao, S. M.; Haasch, R.; Liu, Y. H.; Xie, X.; Hwang, S. W.; Jain, H.; Kang, S. K.; Su, Y. W. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 2014, 24, 645–658.

    Article  CAS  Google Scholar 

  185. Kang, S. K.; Park, G.; Kim, K.; Hwang, S. W.; Cheng, H. Y.; Shin, J.; Chung, S.; Kim, M.; Yin, L.; Lee, J. C. et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 2015, 7, 9297–9305.

    Article  CAS  Google Scholar 

  186. Badawy, W. A.; Al-Kharafi, F. M. Corrosion and passivation behaviors of molybdenum in aqueous solutions of different pH. Electrochim. Acta 1998, 44, 693–702.

    Article  CAS  Google Scholar 

  187. Luo, M. D.; Martinez, A. W.; Song, C.; Herrault, F.; Allen, M. G. A microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromechan. Syst. 2014, 23, 4–13.

    Article  CAS  Google Scholar 

  188. Yao, Q. Q.; Liu, Y. X.; Selvaratnam, B.; Koodali, R. T.; Sun, H. L. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J. Control. Release 2018, 279, 69–78.

    Article  CAS  Google Scholar 

  189. Macdonald, M. L.; Samuel, R. E.; Shah, N. J.; Padera, R. F.; Beben, Y. M.; Hammond, P. T. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 2011, 32, 1446–1453.

    Article  CAS  Google Scholar 

  190. Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397.

    Article  CAS  Google Scholar 

  191. Koo, J.; Kim, S. B.; Choi, Y. S.; Xie, Z. Q.; Bandodkar, A. J.; Khalifeh, J.; Yan, Y.; Kim, H.; Pezhouh, M. K.; Doty, K. et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 2020, 6, eabb1093.

    Article  CAS  Google Scholar 

  192. Choi, Y. S.; Koo, J.; Lee, Y. J.; Lee, G.; Avila, R.; Ying, H. Z.; Reeder, J.; Hambitzer, L.; Im, K.; Kim, J. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 2020, 30, 2000941.

    Article  CAS  Google Scholar 

  193. Goriely, A.; Geers, M. G. D.; Holzapfel, G. A.; Jayamohan, J.; Jérusalem, A.; Sivaloganathan, S.; Squier, W.; van Dommelen, J. A. W.; Waters, S.; Kuhl, E. Mechanics of the brain: Perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol. 2015, 14, 931–965.

    Article  Google Scholar 

  194. Kim, K.; Park, Y. G.; Hyun, B. G.; Choi, M.; Park, J. U. Recent advances in transparent electronics with stretchable forms. Adv. Mater. 2019, 31, 1804690.

    Article  CAS  Google Scholar 

  195. Park, J. Y.; Hyun, B. G.; An, B. W.; Im, H. G.; Park, Y. G.; Jang, J.; Park, J. U.; Bae, B. S. Flexible transparent conductive films with high performance and reliability using hybrid structures of continuous metal nanofiber networks for flexible optoelectronics. ACS Appl. Mater. Interfaces 2017, 9, 20299–20305.

    Article  CAS  Google Scholar 

  196. Oh, S. J.; Kim, T. G.; Kim, S. Y.; Jo, Y.; Lee, S. S.; Kim, K.; Ryu, B. H.; Park, J. U.; Choi, Y.; Jeong, S. Newly designed Cu/Cu10Sn3 core/shell nanoparticles for liquid phase-photonic sintered copper electrodes: Large-area, low-cost transparent flexible electronics. Chem. Mater. 2016, 28, 4714–4723.

    Article  CAS  Google Scholar 

  197. Lee, S.; Kim, S. W.; Ghidelli, M.; An, H. S.; Jang, J.; Bassi, A. L.; Lee, S. Y.; Park, J. U. Integration of transparent supercapacitors and electrodes using nanostructured metallic glass films for wirelessly rechargeable, skin heat patches. Nano Lett. 2020, 20, 4872–4881.

    Article  CAS  Google Scholar 

  198. Jang, J.; Hyun, B. G.; Ji, S.; Cho, E.; An, B. W.; Cheong, W. H.; Park, J. U. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Mater. 2017, 9, e432.

    Article  CAS  Google Scholar 

  199. Zhang, Z. X.; Wang, L.; Yu, H. T.; Zhang, F.; Tang, L.; Feng, Y. Y.; Feng, W. Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl. Mater. Interfaces 2020, 12, 15657–15666.

    Article  CAS  Google Scholar 

  200. Son, D.; Kang, J.; Vardoulis, O.; Kim, Y.; Matsuhisa, N.; Oh, J. Y.; To, J. W.; Mun, J.; Katsumata, T.; Liu, Y. X. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057–1065.

    Article  CAS  Google Scholar 

  201. Yoon, J. H.; Kim, S. M.; Park, H. J.; Kim, Y. K.; Oh, D. X.; Cho, H. W.; Lee, K. G.; Hwang, S. Y.; Park, J.; Choi, B. G. Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosens. Bioelectron. 2020, 150, 111946.

    Article  CAS  Google Scholar 

  202. Park, Y. G.; Kim, H.; Park, S. Y.; Kim, J. Y.; Park, J. U. Instantaneous and repeatable self-healing of fully metallic electrodes at ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 41497–41505.

    Article  CAS  Google Scholar 

  203. Ding, Y. R.; Zeng, M. Q.; Fu, L. Surface chemistry of gallium-based liquid metals. Matter 2020, 3, 1477–1506.

    Article  Google Scholar 

  204. Park, Y. G.; Min, H.; Kim, H.; Zhexembekova, A.; Lee, C. Y.; Park, J. U. Three-dimensional, high-resolution printing of carbon nanotube/liquid metal composites with mechanical and electrical reinforcement. Nano Lett. 2019, 19, 4866–4872.

    Article  CAS  Google Scholar 

  205. Park, Y. G.; An, H. S.; Kim, J. Y.; Park, J. U. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures. Sci. Adv. 2019, 5, eaaw2844.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science & ICT (MSIT) and the Ministry of Trade, Industry and Energy (MOTIE) of Korea through the National Research Foundation (Nos. 2019R1A2B5B03069358 and 2016R1A5A1009926), the Bio & Medical Technology Development Program (No. 2018M3A9F1021649), the Nano Material Technology Development Program (No. 2016M3A7B4910635), Sejong Science Fellowship (No. 2021R1C1C2008657) and the Technology Innovation Program (Nos. 20010366 and 20013621, Center for Super Critical Material Industrial Technology). Also, the authors thank financial support by the Institute for Basic Science (No. IBS-R026-D1) and the Research Program (No. 2019-22-0228) funded by Yonsei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Ung Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y.W., Jun, Y.S., Park, YG. et al. Recent advances in electronic devices for monitoring and modulation of brain. Nano Res. 14, 3070–3095 (2021). https://doi.org/10.1007/s12274-021-3476-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3476-y

Keywords

Navigation