Skip to main content
Log in

Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The production of bimetallic nanoparticles with ultrasmall sizes is the constant pursuit in chemistry and materials science because of their promising applications in catalysis, electronics and sensing. Here we report ambient-temperature preparation of bimetallic NPs with tunable size and composition using microfluidic-controlled co-reduction of two metal precursors on silicon surface. Instead of free diffusion of metal ions in bulk system, microfluidic flow could well control the local ions concentration, thus leading to homogenous and controllable reduction rate among different nucleation sites. By controlling precursor concentration, flow rate and reaction time, we rationally design a series of bimetallic NPs including Ag-Cu, Ag-Pd, Cu-Pt, Cu-Pd and Pt-Pd NPs with ultrasmall sizes (∼ 3.0 nm), tight size distributions (relative standard deviation (RSD) < 21%), clean surface, and homogenous elemental compositions among particles (standard deviation (SD) of weight ratios < 3.5%). This approach provides a facile, green and scalable method toward the synthesis of diverse bimetallic NPs with excellent activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res.2020, 13, 2735–2740.

    Article  CAS  Google Scholar 

  2. Gao, D. W.; Li, S.; Song, G. L.; Zha, P. F.; Li, C. C.; Wei, Q.; Lv, Y. P.; Chen, G. Z. One-pot synthesis of Pt-Cu bimetallic nanocrystals with different structures and their enhanced electrocatalytic properties. Nano Res.2018, 11, 2612–2624.

    Article  CAS  Google Scholar 

  3. Song, Y. D.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science2020, 367, 777–781.

    Article  CAS  Google Scholar 

  4. Zhang, R. P.; Zhao, S. T.; Ding, J.; Chong, Y.; Jia, T.; Ophus, C.; Asta, M.; Ritchie, R. O.; Minor, A. M. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature2020, 581, 283–287.

    Article  CAS  Google Scholar 

  5. Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. O.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed.2020, 59, 19450–19459.

    Article  CAS  Google Scholar 

  6. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev.2016, 116, 10414–10472.

    Article  CAS  Google Scholar 

  7. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater.2011, 23, 1044–1060.

    Article  CAS  Google Scholar 

  8. Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater.2016, 1, 16009.

    Article  CAS  Google Scholar 

  9. Alexeev, O. S.; Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res.2003, 42, 1571–1587.

    Article  CAS  Google Scholar 

  10. Candy, J. P.; Didillon, B.; Smith, E. L.; Shay, T. B.; Basset, J M. Surface organometallic chemistry on metals: A novel and effective route to custom-designed bimetallic catalysts. J. Mol. Catal.1994, 86, 179–204.

    Article  CAS  Google Scholar 

  11. Lu, J.; Low, K. B.; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P. C.; Elam, J. W. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun.2014, 5, 3264.

    Article  Google Scholar 

  12. Bresin, M.; Chamberlain, A.; Donev, E. U.; Samantaray, C. B.; Schardien, G. S.; Hastings, J. T. Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew. Chem., Int. Ed.2013, 52, 8004–8007.

    Article  CAS  Google Scholar 

  13. Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science2017, 358, 1427–1430.

    Article  CAS  Google Scholar 

  14. Ding, K. L.; Cullen, D. A.; Zhang, L. B.; Cao, Z.; Roy, A. D.; Ivanov, I. N.; Cao, D. M. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science2018, 362, 560–564.

    Article  CAS  Google Scholar 

  15. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science2018, 359, 1489–1494.

    Article  CAS  Google Scholar 

  16. Yang, C. P.; Ko, B. H.; Hwang, S.; Liu, Z. Y.; Yao, Y. G.; Luc, W.; Cui, M. J.; Malkani, A. S.; Li, T. Y.; Wang, X. Z. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv.2020, 6, eaaz6844.

    Article  Google Scholar 

  17. Offner-Marko, L.; Bordet, A.; Moos, G.; Tricard, S.; Rengshausen, S.; Chaudret, B.; Luska, K. L.; Leitner, W. Bimetallic nanoparticles in supported ionic liquid phases as multifunctional catalysts for the selective hydrodeoxygenation of aromatic substrates. Angew. Chem., Int. Ed.2018, 57, 12721–12726.

    Article  CAS  Google Scholar 

  18. Yan, J. J.; Malakooti, M. H.; Lu, Z.; Wang, Z. Y.; Kazem, N.; Pan, C. F.; Bockstaller, M. R.; Majidi, C.; Matyjaszewski, K. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol.2019, 14, 684–690.

    Article  CAS  Google Scholar 

  19. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science2017, 358, 223–227.

    Article  CAS  Google Scholar 

  20. Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sorensen, R. Z.; Christensen, C. H.; Norskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science2008, 320, 1320–1322.

    Article  CAS  Google Scholar 

  21. Okhlopkova, L. B.; Matus, E. V.; Ismagilov, I. Z.; Kerzhentsev, M. A.; Ismagilov, Z. R. Synthesis of nanosized thin-film bimetallic catalysts based on mesoporous TiO2 for microstructured reactors. Kinet. Catal.2013, 54, 511–519.

    Article  CAS  Google Scholar 

  22. Sui, J. S.; Yan, J. Y.; Wang, K.; Luo, G. S. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res.2020, 13, 2837–2846.

    Article  CAS  Google Scholar 

  23. Wu, S. T.; Xin, Z.; Zhao, S. C.; Sun, S. T. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Res.2019, 12, 2736–2742.

    Article  CAS  Google Scholar 

  24. Lu, M. Q.; Yang, S. K.; Ho, Y. P.; Grigsby, C. L.; Leong, K. W.; Huang, T. J. Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing. ACS Nano2014, 8, 10026–10034.

    Article  CAS  Google Scholar 

  25. Zhang, L.; Niu, G. D.; Lu, N.; Wang, J. G.; Tong, L. M.; Wang, L. D.; Kim, M. J.; Xia, Y. N. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors. Nano Lett.2014, 14, 6626–6631.

    Article  CAS  Google Scholar 

  26. Elvira, K. S.; Casadevalli Solvas, X.; Wootton, R. C. R.; deMello, A. J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem.2013, 5, 905–915.

    Article  CAS  Google Scholar 

  27. deMello, A. J. Control and detection of chemical reactions in microfluidic systems. Nature2006, 442, 394–402.

    Article  CAS  Google Scholar 

  28. Marre, S.; Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev.2010, 39, 1183–1202.

    Article  CAS  Google Scholar 

  29. Liu, Y.; Jiang, X. Y. Why microfluidics? Merits and trends in chemical synthesis. Lab Chip2017, 17, 3960–3978.

    Article  CAS  Google Scholar 

  30. Kenis, P. J. A.; Ismagilov, R. F.; Whitesides, G. M. Microfabrication inside capillaries using multiphase laminar flow patterning. Science1999, 285, 83–85.

    Article  CAS  Google Scholar 

  31. Lee, C. Y.; Chang, C. L.; Wang, Y. N.; Fu, L. M. Microfluidic mixing: A review. Int. J. Mol. Sci.2011, 12, 3263–3287.

    Article  CAS  Google Scholar 

  32. Li, M.; Ma, Q.; Zi, W.; Liu, X. J.; Zhu, X. J.; Liu, S. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 2015, 1, e1400268.

    Article  Google Scholar 

  33. Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science2007, 315, 220–222.

    Article  CAS  Google Scholar 

  34. Wang, H. Y.; Zhou, Y. F.; Jiang, X. X.; Sun, B.; Zhu, Y.; Wang, H.; Su, Y. Y.; He, Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem., Int. Ed.2015, 54, 5132–5136.

    Article  CAS  Google Scholar 

  35. Yamada, Y. M. A.; Yuyama, Y.; Sato, T.; Fujikawa, S.; Uozumi, Y. A palladium-nanoparticle and silicon-nanowire-array hybrid: A platform for catalytic heterogeneous reactions. Angew. Chem., Int. Ed.2014, 53, 127–131.

    Article  CAS  Google Scholar 

  36. Liu, X.; Astruc, D. From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications in catalysis, sensing, and materials science. Adv. Mater.2017, 29, 1605305.

    Article  Google Scholar 

  37. Tsai, T. H.; Yang, H.; Chein, R.; Yeh, M. S. Two-dimensional simulations of ion concentration distribution in microstructural electroforming. Int. J. Adv. Manuf. Tech.2011, 57, 639–646.

    Article  Google Scholar 

  38. Oskam, G.; Long, J. G.; Natarajan, A.; Searson, P. C. Electrochemical deposition of metals onto silicon. J. Phys. D Appl. Phys.1998, 31, 1927–1949.

    Article  CAS  Google Scholar 

  39. Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun.2018, 9, 1252.

    Article  Google Scholar 

  40. Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun.2017, 8, 15131.

    Article  Google Scholar 

  41. Kim, T.; Fu, X.; Warther, D.; Sailor, M. J. Size-controlled Pd nanoparticle catalysts prepared by galvanic displacement into a porous Si-Iron oxide nanoparticle host. ACS Nano2017, 11, 2773–2784.

    Article  CAS  Google Scholar 

  42. Zhang, W. Y.; Qin, Q.; Dai, L.; Qin, R. X.; Zhao, X. J.; Chen, X. M.; Ou, D. H.; Chen, J.; Chuong, T. T.; Wu, B. H. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces. Angew. Chem., Int. Ed.2018, 57, 9475–9479.

    Article  CAS  Google Scholar 

  43. Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc.2019, 141, 2490–2499.

    Article  CAS  Google Scholar 

  44. Wang, C. Y.; Chen, H. Y.; Sun, L. Y.; Chen, W. L.; Chang, Y. M.; Ahn, H.; Li, X. Q.; Gwo, S. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics. Nat. Commun.2015, 6, 7734.

    Article  CAS  Google Scholar 

  45. Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science2016, 351, 965–968.

    Article  CAS  Google Scholar 

  46. Soled, S. Silica-supported catalysts get a new breath of life. Science2015, 350, 1171–1172.

    Article  CAS  Google Scholar 

  47. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. N.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science2009, 324, 1302–1305.

    Article  CAS  Google Scholar 

  48. Laval, P.; Salmon, J. B.; Joanicot, M. A microfluidic device for investigating crystal nucleation kinetics. J. Cryst. Growth2007, 303, 622–628.

    Article  CAS  Google Scholar 

  49. Sultana, M.; Jensen, K. F. Microfluidic continuous seeded crystallization: Extraction of growth kinetics and impact of impurity on morphology. Cryst. Growth Des.2012, 12, 6260–6266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Chengxi Cao (Shanghai Jiao Tong University, China), Prof. Shuit-Tong Lee, Prof. Tao Cheng, Prof. Zhaokui Wang and Dr. Muhan Cao (Soochow University, China) for their general help and valuable suggestions. We appreciate financial support from the National Natural Science Foundation of China (Nos. 21825402 and 22074101), the Natural Science Foundation of Jiangsu Province of China (No. BK20191417) and the Program for Jiangsu Specially-Appointed Professors to the Prof. Yao He, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), 111 Project as well as the Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houyu Wang or Yao He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Song, B., Chen, R. et al. Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles. Nano Res. 15, 248–254 (2022). https://doi.org/10.1007/s12274-021-3466-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3466-0

Keywords

Navigation