Skip to main content

Advertisement

Log in

Microfluidics-assisted, time-effective and continuous synthesis of bimetallic ZIF-8/67 under different synthesis conditions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bimetallic MOFs offer many advantageous properties rather than monometallic MOFs useful for variety of applications including energy storage and conversion, catalysis, gas separation, sensing, etc. Desired morphology with precise control of crystal size is of utmost importance for specific applications. Microfluidics-incorporated continuous synthesis is demonstrated for bimetallic ZIF-8/67 exhibiting significant nanocrystallinity, porosity and surface area. The microfluidic approach of synthesizing MOF is found very time-efficient in comparison with the conventional techniques. Bimetallic ZIF-8/67 samples were synthesized at different reaction conditions, without adding capping agents and modulators, followed by sophisticated characterization techniques including powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller analysis and Fourier transform infrared spectroscopy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Data will be available on request till 12 months from the date of first online publication of this article.

References

  1. Huang XC, Lin YY, Zhang JP, Chen XM (2006) Ligand-Directed strategy for zeolite-type metal–organic frameworks: zinc(ii) imidazolates with unusual zeolitic topologies. Angew Chemie Int Ed 45:1557–1559. https://doi.org/10.1002/ANIE.200503778

    Article  CAS  Google Scholar 

  2. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191. https://doi.org/10.1073/PNAS.0602439103

    Article  CAS  Google Scholar 

  3. Kaur G, Rai RK, Tyagi D, Yao X, Li PZ, Yang XC, Zhao Y, Xu Q, Singh SK (2016) Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J Mater Chem A 4:14932–14938. https://doi.org/10.1039/C6TA04342A

    Article  CAS  Google Scholar 

  4. Li R, Ren X, Ma H, Feng X, Lin Z, Li X, Hu C, Wang B (2014) Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. J Mater Chem A 2:5724–5729. https://doi.org/10.1039/C3TA15058E

    Article  CAS  Google Scholar 

  5. Schejn A, Aboulaich A, Balan L, Falk V, Lalevée J, Medjahdi G, Aranda L, Mozet K, Schneider R (2015) Cu 2+ -doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal Sci Technol 5:1829–1839. https://doi.org/10.1039/C4CY01505C

    Article  CAS  Google Scholar 

  6. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H (2019) Mixed-metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angew Chemie Int Ed 58:15188–15205. https://doi.org/10.1002/ANIE.201902229

    Article  CAS  Google Scholar 

  7. Burrows AD (2011) Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. Cryst Eng Comm 13:3623–3642. https://doi.org/10.1039/C0CE00568A

    Article  CAS  Google Scholar 

  8. Yang X, Xu Q (2017) Bimetallic metal–organic frameworks for gas storage and separation. Cryst Growth Des 17:450–1455. https://doi.org/10.1021/ACS.CGD.7B00166

    Article  Google Scholar 

  9. Sanati S, Abazari R, Albero J, Morsali A, García H, Liang Z, Zou R (2021) Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew Chemie Int Ed 60:11048–11067. https://doi.org/10.1002/ANIE.202010093

    Article  CAS  Google Scholar 

  10. Feng L, Wang KY, Day GS, Zhou HC (2019) The chemistry of multi-component and hierarchical framework compounds. Chem Soc Rev 48:4823–4853. https://doi.org/10.1039/C9CS00250B

    Article  CAS  Google Scholar 

  11. Fujiwara A, Watanabe S, Miyahara MT (2021) Flow microreactor synthesis of zeolitic imidazolate framework (zif)@zif core-shell metal-organic framework particles and their adsorption properties. Langmuir 37:3858–3867. https://doi.org/10.1021/acs.langmuir.0c03378

    Article  CAS  Google Scholar 

  12. Foo ML, Matsuda R, Kitagawa S (2013) Functional hybrid porous coordination polymers. Chem Mater 26:310–322. https://doi.org/10.1021/CM402136Z

    Article  Google Scholar 

  13. Wang Y, Bredenkötter B, Rieger B, Volkmer D (2007) Two-dimensional metal–organic frameworks (MOFs) constructed from heterotrinuclear coordination units and 4, 4′-biphenyldicarboxylate ligands. Dalt Trans 6:689–696. https://doi.org/10.1039/B609733B

    Article  Google Scholar 

  14. Dincǎ M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4CI) 3(BTT)8(CH3OH)10]2. J Am Chem Soc 129:11172–11176. https://doi.org/10.1021/ja072871f

    Article  CAS  Google Scholar 

  15. Kim D, Coskun A (2017) Template-directed approach towards the realization of ordered heterogeneity in bimetallic metal-organic frameworks. Angew Chem Int Ed Engl 56:5071–5076. https://doi.org/10.1002/ANIE.201702501

    Article  CAS  Google Scholar 

  16. Chen L, Chen Z, Liu X, Wang X (2020) Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res 145(14):1533–1540. https://doi.org/10.1007/S12274-020-3212-Z

    Article  Google Scholar 

  17. Dang S, Zhu QL, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3:1–14. https://doi.org/10.1038/natrevmats.2017.75

    Article  CAS  Google Scholar 

  18. Sun JK, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100. https://doi.org/10.1039/C4EE00517A

    Article  CAS  Google Scholar 

  19. Zhou K, Mousavi B, Luo Z, Phatanasri S, Chaemchuen S, Verpoort F (2017) Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67. J Mater Chem A 5:952–957. https://doi.org/10.1039/C6TA07860E

    Article  CAS  Google Scholar 

  20. Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y (2015) Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew Chemie 127:11039–11043. https://doi.org/10.1002/ANGE.201504242

    Article  Google Scholar 

  21. Kuruppathparambil RR, Babu R, Jeong HM, Hwang GY, Jeong GS, Il Kim M, Kim DW, Park DW (2016) A solid solution zeolitic imidazolate framework as a room temperature efficient catalyst for the chemical fixation of CO2. Green Chem 18:6349–6356. https://doi.org/10.1039/C6GC01614F

    Article  CAS  Google Scholar 

  22. He D, Gao Y, Yao Y, Wu L, Zhang J, Huang ZH, Wang MX (2020) Asymmetric supercapacitors based on hierarchically nanoporous carbon and ZnCo2O4 from a single biometallic metal-organic frameworks (Zn/Co-MOF). Front Chem 8:719. https://doi.org/10.3389/FCHEM.2020.00719/BIBTEX

    Article  CAS  Google Scholar 

  23. Xin N, Liu Y, Niu H, Bai H, Shi W (2020) In-situ construction of metal organic frameworks derived Co/Zn–S sandwiched graphene film as free-standing electrodes for ultra-high energy density supercapacitors. J Power Sources 451:227772. https://doi.org/10.1016/J.JPOWSOUR.2020.227772

    Article  CAS  Google Scholar 

  24. Kim J, Young C, Lee J, Park MS, Shahabuddin M, Yamauchi Y, Kim JH (2016) CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors. Chem Commun 52:13016–13019. https://doi.org/10.1039/C6CC07705F

    Article  CAS  Google Scholar 

  25. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137:1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  Google Scholar 

  26. Hillman F, Zimmerman JM, Paek SM, Hamid MRA, Lim WT, Jeong HK (2017) Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. J Mater Chem A 5:6090–6099. https://doi.org/10.1039/C6TA11170J

    Article  CAS  Google Scholar 

  27. Yao B, Lua SK, Lim HS, Zhang Q, Cui X, White TJ, Ting VP, Dong ZL (2021) Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis. Microporous Mesoporous Mater 314:110777. https://doi.org/10.1016/J.MICROMESO.2020.110777

    Article  CAS  Google Scholar 

  28. Wu KJ, Torrente-Murciano L (2018) Continuous synthesis of tuneable sized silver nanoparticles: Via a tandem seed-mediated method in coiled flow inverter reactors. React Chem Eng 3:267–276. https://doi.org/10.1039/C7RE00194K

    Article  CAS  Google Scholar 

  29. Ahmed M, Al-Hadeethi YM, Alshahrie A, Kutbee AT, Shaaban ER, Al-Hossainy AF (2021) Thermal analysis of a metal–organic framework ZnxCo1-X-ZIF-8 for recent applications. Polym 13:4051. https://doi.org/10.3390/POLYM13224051

    Article  CAS  Google Scholar 

  30. Li Q, Yang W, Li F, Cui A, Hong J (2018) Preparation of CoB/ZIF-8 supported catalyst by single step reduction and its activity in hydrogen production. Int J Hydrogen Energy 43:271–282. https://doi.org/10.1016/J.IJHYDENE.2017.11.105

    Article  CAS  Google Scholar 

  31. Panchariya DK, Rai RK, Anil Kumar E, Singh SK (2018) Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage. ACS Omega 3:167–175. https://doi.org/10.1021/acsomega.7b01693

    Article  CAS  Google Scholar 

  32. Abuzalat O, Tantawy H, Mustafa Basuni MH, Alkordi AB (2022) Designing bimetallic zeolitic imidazolate frameworks (ZIFs) for aqueous catalysis: Co/Zn-ZIF-8 as a cyclic-durable catalyst for hydrogen peroxide oxidative decomposition of organic dyes in water. RSC Adv 12:6025–6036. https://doi.org/10.1039/D2RA00218C

    Article  CAS  Google Scholar 

  33. Barreca D, Massignan C, Daolio S, Fabrizio M, Piccirillo C, Armelao L, Tondello E (2001) Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt(II) precursor chemical vapor deposition. Chem Mater 13(2):588–593. https://doi.org/10.1021/cm001041x

    Article  CAS  Google Scholar 

  34. Tu NTT, Sy PC, Minh TT, Thanh HTM, Thien TV, Long HT, Khieu DQ (2019) Synthesis of (Zn/Co)-based zeolite imidazole frameworks and their applications in visible light-driven photocatalytic degradation of congo red. J Inclusion Phenomena Macrocyclic Chem 95:99–110. https://doi.org/10.1007/S10847-019-00925-7

    Article  CAS  Google Scholar 

  35. Fantauzzi M, Secci F, Sanna Angotzi M, Passiu C, Cannas C, Rossi A (2019) Nanostructured spinel cobalt ferrites: Fe and Co chemical state, cation distribution and size effects by X-ray photoelectron spectroscopy. RSC Adv 9:19171–19179. https://doi.org/10.1039/C9RA03488A

    Article  CAS  Google Scholar 

  36. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA

  37. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6:1887–1899. https://doi.org/10.1039/C7TA08268A

    Article  CAS  Google Scholar 

  38. Wu C, Xie D, Mei Y, Xiu Z, Poduska KM, Li D, Xu B, Sun D (2019) Unveiling the thermolysis natures of ZIF-8 and ZIF-67 by employing in situ structural characterization studies. Phys Chem Chem Phys 21:17571–17577. https://doi.org/10.1039/C9CP02582K

    Article  CAS  Google Scholar 

  39. Yao J, Chen R, Wang K, Wang H (2013) Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous Mesoporous Mater 165:200–204. https://doi.org/10.1016/J.MICROMESO.2012.08.018

    Article  CAS  Google Scholar 

  40. Hachuła B, Nowak M, Kusz J (2010) Crystal and molecular structure analysis of 2-methylimidazole. J Chem Crystallogr 3:201–206. https://doi.org/10.1007/S10870-009-9634-9

    Article  Google Scholar 

  41. Xu B, Mei Y, Xiao Z, Kang Z, Wang R, Sun D (2017) Monitoring thermally induced structural deformation and framework decomposition of ZIF-8 through in situ temperature dependent measurements. Phys Chem Chem Phys 19:27178–27183. https://doi.org/10.1039/C7CP04694D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, Government of India, for providing scholarship to SK, and SVNIT-Surat for kind support for providing the facilities for the research work.

Author information

Authors and Affiliations

Authors

Contributions

SK performed all the experiments and analyzed the data. SK and VNL designed the experiments. BS helped in analysis of the samples and checked the manuscript. SK and VNL interpreted the results and wrote the manuscript. VNL conceived and supervised the work.

Corresponding author

Correspondence to V. N. Lad.

Ethics declarations

Conflicts of interest

Authors declare that there are no conflicts of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevat, S., Sutariya, B. & Lad, V.N. Microfluidics-assisted, time-effective and continuous synthesis of bimetallic ZIF-8/67 under different synthesis conditions. J Mater Sci 58, 5219–5233 (2023). https://doi.org/10.1007/s10853-023-08342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08342-5

Navigation