Skip to main content
Log in

FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (PIBs) are promising next-generation energy storage candidates due to abundant resources and low cost. Sb-based materials with high theoretical capacity (660 mAh·g−1) and low working potential are considered as promising anode for PIBs. The remaining challenge is poor stability and slow kinetics. In this work, FeSb@N-doped carbon quantum dots anchored in three-dimensional (3D) porous N-doped carbon (FeSb@C/N⊂3DC/N), a Sb-based material with a particular structure, is designed and constructed by a green salt-template method. As an anode for PIBs, it exhibits extraordinarily high-rate and long-cycle stability (a capacity of 245 mAh·g−1 at 3,080 mA·g−1 after 1,000 cycles). The pseudocapacitance contribution (83%) is demonstrated as the origin of high-rate performance of the FeSb@C/N⊂3DC/N electrode. Furthermore, the potassium storage mechanism in the electrode is systematically investigated through ex-situ characterization techniques including ex-situ transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Overall, this study could provide a useful guidance for future design of high-performance electrode materials for PIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H. Practical evaluation of Li-ion batteries. Joule 2019, 3, 911–914.

    Article  CAS  Google Scholar 

  2. Zhang, W. L.; Zhang, F.; Ming, F. W.; Alshareef, H. N. Sodium-ion battery anodes: Status and future trends. EnergyChem 2019, 1, 100012.

    Article  Google Scholar 

  3. Palomares, V.; Casas-Cabanas, M.; Castillo-Martinez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

    Article  CAS  Google Scholar 

  4. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  5. Vaalma, C.; Buchholz, D.; Passerini, S. Non-aqueous potassium-ion batteries: A review. Curr. Opin. Electrochem. 2018, 9, 41–48.

    Article  CAS  Google Scholar 

  6. Ma, G. Y.; Xu, X.; Feng, Z. Y.; Hu, C. J.; Zhu, Y. S.; Yang, X. F.; Yang, J.; Qian, Y. T. Carbon-coated mesoporous Co9S8 nanoparticles on reduced graphene oxide as a long-life and high-rate anode material for potassium-ion batteries. Nano Res. 2020, 13, 802–809.

    Article  CAS  Google Scholar 

  7. Pan, Q. G.; Gong, D. C.; Tang, Y. B. Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Mater. 2020, 31, 328–343.

    Article  Google Scholar 

  8. Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

    Article  CAS  Google Scholar 

  9. Jiang, G. S.; Xu, X. S.; Han, H J.; Qu, C. Z.; Repich, H.; Xu, F.; Wang, H. Q. Edge-enriched MoS2 for kinetics-enhanced potassium storage. Nano Res. 2020, 13, 2763–2769.

    Article  CAS  Google Scholar 

  10. Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 2018, 8, 1702384.

    Article  Google Scholar 

  11. Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

    Article  Google Scholar 

  12. Wang, W. K.; Ji B. F.; Yao, W. J.; Zhang, X. Y.; Zheng, Y. P.; Zhou, X. L.; Kidkhunthod, P.; He, H. Y.; Tang, Y. B. A novel low-cost and environment-friendly cathode with large channels and high structure stability for potassium-ion storage. Sci. China Mater. 2021, 64, 1047–1057.

    Article  CAS  Google Scholar 

  13. Zheng, J. F.; Wu, Y. J.; Sun, Y. J.; Rong, J. H.; Li, H. Y.; Niu, L. Advanced anode materials of potassium ion batteries: From zero dimension to three dimensions. Nano-Micro Lett. 2021, 13, 12.

    Article  Google Scholar 

  14. Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

    Article  Google Scholar 

  15. Zhang, H. H.; He, H. N.; Luan, J. Y.; Huang, X. B.; Tang, Y. G.; Wang, H. Y. Adjusting the yolk-shell structure of carbon spheres to boost the capacitive K+ storage ability. J. Mater. Chem. A 2018, 6, 23318–23325.

    Article  CAS  Google Scholar 

  16. Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103–8110.

    Article  CAS  Google Scholar 

  17. Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

    Article  CAS  Google Scholar 

  18. Sultana, I.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.

    Article  Google Scholar 

  19. Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

    Article  CAS  Google Scholar 

  20. Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

    Article  Google Scholar 

  21. Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. A. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.

    Article  CAS  Google Scholar 

  22. Wang, B. Y.; Deng, Z. W.; Xia, Y. T.; Hu, J. X.; Li, H. J.; Wu, H.; Zhang, Q. B.; Zhang, Y.; Liu, H. K.; Dou, S. X. Realizing reversible conversion-alloying of Sb(V) in polyantimonic acid for fast and durable lithium-and potassium-ion storage. Adv. Energy Mater. 2020, 10, 1903119.

    Article  CAS  Google Scholar 

  23. Liu, Q.; Fan, L.; Chen, S. H.; Su, S. L.; Ma, R. F.; Han, X.; Lu, B. A. Antimony-graphite composites for a high-performance potassium-ion battery. Energy Technol. 2019, 7, 1900634.

    Article  CAS  Google Scholar 

  24. Madec, L.; Gabaudan, V.; Gachot, G.; Stievano, L.; Monconduit, L.; Martinez, H. Paving the way for K-ion batteries: Role of electrolyte reactivity through the example of Sb-based electrodes. ACS Appl. Mater. Interfaces 2018, 10, 34116–34122.

    Article  CAS  Google Scholar 

  25. Meng, W. J.; Guo, M. Q.; Liu, X.; Chen, J. J.; Bai, Z. C.; Wang, Z. H. Spherical nano Sb@HCMs as high-rate and superior cycle performance anode material for sodium-ion batteries. J. Alloys Compd. 2019, 795, 141–150.

    Article  CAS  Google Scholar 

  26. Li, H. M.; Wang, K. L.; Zhou, M.; Li, W.; Tao, H. W.; Wang, R. X.; Cheng, S. J.; Jiang, K. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications. ACS Nano 2019, 13, 9533–9540.

    Article  CAS  Google Scholar 

  27. Liu, D. Y.; Yang, L.; Chen, Z. Y.; Zou, G. Q.; Hou, H. S.; Hu, J. G.; Ji, X. B. Ultra-stable Sb confined into N-doped carbon fibers anodes for high-performance potassium-ion batteries. Sci. Bull. 2020, 65, 1003–1012.

    Article  CAS  Google Scholar 

  28. Yang, L. P.; Huang, Y. L.; Li, X. Y.; Sheng, J.; Li, F.; Xie, Z. J.; Zhou, Z. Micro/nanostructure-dependent electrochemical performances of Sb2O3 micro-bundles as anode materials for sodium-ion batteries. ChemElectroChem 2018, 5, 2522–2527.

    Article  CAS  Google Scholar 

  29. An, Y. L.; Tian, Y.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018, 12, 12932–12940.

    Article  CAS  Google Scholar 

  30. Han, Y.; Li, T. Q.; Li, Y.; Tian, J.; Yi, Z.; Lin, N.; Qian, Y. T. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater. 2019, 20, 46–54.

    Article  Google Scholar 

  31. Wang, H.; Wu, X.; Qi, X. J.; Zhao, W.; Ju, Z. C. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37.

    Article  Google Scholar 

  32. Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

    Article  CAS  Google Scholar 

  33. Liu, H. J.; Wang, Z. J.; Wu, Z. H.; Zhang, S.; Ge, S. H.; Guo, P.; Hua, M. L.; Lu, X. Q.; Wang, S. T.; Zhang, J. Direct tuning of meso-/micro-porous structure of carbon nanofibers confining Sb nanocrystals for advanced sodium and potassium storage. J. Alloy. Compd. 2020, 833, 155127.

    Article  CAS  Google Scholar 

  34. Zhang, Y. F.; Li, M.; Huang, F. B.; Li, Y. S.; Xu, Y. Q.; Wang, F.; Yao, Q. R.; Zhou, H. Y.; Deng, J. Q. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries. Appl. Surf. Sci. 2020, 499, 143907.

    Article  CAS  Google Scholar 

  35. Xiong, P. X.; Wu, J. X.; Zhou, M. F.; Xu, Y. H. Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 2020, 14, 1018–1026.

    Article  CAS  Google Scholar 

  36. Han, J.; Zhu, K. J.; Liu, P.; Si, Y. C.; Chai, Y. J.; Jiao, L. F. N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries. J. Mater. Chem. A 2019, 7, 25268–25273.

    Article  CAS  Google Scholar 

  37. Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, X.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; He, C. N. et al. Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chem. Eng. J. 2020, 384, 123327.

    Article  CAS  Google Scholar 

  38. Li, Y.; Chen, M. H.; Liu, B.; Zhang, Y.; Liang, X. Q.; Xia, X. H. Heteroatom doping: An effective way to boost sodium ion storage. Adv. Energy Mater. 2020, 10, 2000927.

    Article  CAS  Google Scholar 

  39. Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.

    Article  CAS  Google Scholar 

  40. Li, P. H; Yang, Y.; Gong, S.; Lv, F.; Wang, W.; Li, Y. J.; Luo, M. C.; Xing, Y.; Wang, Q.; Guo, S. J. Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultrastable sodium-ion batteries. Nano Res. 2019, 12, 2218–2223.

    Article  CAS  Google Scholar 

  41. Kim, H.; Lim, H.; Kim, H. S.; Kim, K. J.; Byun, D.; Choi, W. Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries. Nano Res. 2019, 12, 397–404.

    Article  CAS  Google Scholar 

  42. Jin, Q. Z.; Li, W.; Wang, K. L.; Li, H. M.; Feng, P. Y.; Zhang, Z. C.; Wang, W.; Jiang, K. Tailoring 2D heteroatom-doped carbon nanosheets with dominated pseudocapacitive behaviors enabling fast and highperformance sodium storage. Adv. Funct. Mater. 2020, 30, 1909907.

    Article  CAS  Google Scholar 

  43. Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.

    Article  CAS  Google Scholar 

  44. Li, W. D.; Wang, D. Z.; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Superior potassium-ion storage properties by engineering pseudocapacitive sulfur/nitrogen-containing species within three-dimensional flower-like hard carbon architectures. Carbon 2020, 161, 97–107.

    Article  CAS  Google Scholar 

  45. Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao N. Q. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 14309–14318.

    Article  CAS  Google Scholar 

  46. Zhang, Y.; Zai, J. T.; He, K.; Qian X. F. Fe3C nanoparticles encapsulated in highly crystalline porous graphite: Salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. Chem. Commun. 2018, 54, 3158–3161.

    Article  CAS  Google Scholar 

  47. Ding, R.; Chen, Q.; Luo, Q.; Zhou, L. X.; Wang, Y.; Zhang, Y.; Fan G. Y. Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: Excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22, 835–842.

    Article  CAS  Google Scholar 

  48. Chen, Z.; Liao, J. X.; Li, W. L.; Song, Y. C.; Chen, C.; Yang, J.; Xu, Z. Q.; Feng, T. T.; Wu, M. Q. Activation-free N-doped porous carbon to enhance surface-driven K storage vs. intercalation dominated Na storage. Appl. Surf. Sci. 2020, 506, 144909.

    Article  CAS  Google Scholar 

  49. Cui, X. Y.; Yang, S. B.; Yan, X. X.; Leng, J. G.; Shuang, S.; Ajayan, P. M.; Zhang, Z. J. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708–5717.

    Article  CAS  Google Scholar 

  50. Nithya, C.; Thiyagaraj, G. Morphology oriented CuS nanostructures: Superior K-ion storage using surface enhanced pseudocapacitive effects. Sustainable Energy Fuels 2020, 4, 3574–3587.

    Article  CAS  Google Scholar 

  51. Wang, H. Q.; Yang, G. H.; Cui, L. S.; Li, Z. S.; Yan, Z. X.; Zhang, X. H.; Huang, Y. G.; Li, Q. Y. Controlled synthesis of three-dimensional interconnected graphene-like nanosheets from graphite microspheres as high-performance anodes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 21298–21307.

    Article  CAS  Google Scholar 

  52. Wang, H. Q.; Zhang, D. C.; Zhang, X. H.; Li, Z. S.; Yang, G. H.; Wu, Y. S.; Ji, J. J.; Li, Q. Y. Sustainable synthesis of Co NPs@Graphited carbon microspheres as an efficient electrocatalyst for the oxygen-evolution reaction. Chem. Eng. J. 2016, 294, 193–201.

    Article  CAS  Google Scholar 

  53. Liu, L. Z.; Zeng, G.; Chen, J. X.; Bi, L. L.; Dai, L. M.; Wen, Z. H. N-doped porous carbon nanosheets as pH-universal ORR electro-catalyst in various fuel cell devices. Nano Energy 2018, 49, 393–402.

    Article  CAS  Google Scholar 

  54. He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250–260.

    Article  CAS  Google Scholar 

  55. Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418–2432.

    Article  CAS  Google Scholar 

  56. Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724.

    Article  CAS  Google Scholar 

  57. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  Google Scholar 

  58. Birchall, T.; Connor, J. A.; Hillier, L. H. High-energy photoelectron spectroscopy of some antimony compounds. J. Chem. Soc., Dalton Trans. 1975, 2003–2006.

  59. Li, T. F.; Li, M.; Zhang, M. R.; Li, X.; Liu, K. H.; Zhang, M. Y.; Liu, X. E; Sun, D. M.; Xu, L.; Zhang, Y. W. et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries. Carbon 2019, 153, 364–371.

    Article  CAS  Google Scholar 

  60. Wang, Q. C.; Lei, Y. P.; Chen, Z. Y.; Wu, N.; Wang, Y. B.; Wang, B.; Wang, Y. D. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries. J. Mater. Chem. A 2018, 6, 516–526.

    Article  CAS  Google Scholar 

  61. He, H. N.; Sun, D.; Tang, Y. G.; Wang, H. Y.; Shao, M. H. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251.

    Article  Google Scholar 

  62. Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

    Article  CAS  Google Scholar 

  63. Gao, L. Q.; Xiao, M. L.; Jin, Z.; Liu, C. P.; Zhu, J. B.; Ge, J. J.; Xing, W. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem. 2018, 27, 1668–1673.

    Article  Google Scholar 

  64. Li, B.; Li, S. X.; Jin, Y.; Zai, J. T.; Chen, M.; Nazakat, A.; Zhan, P.; Huang, Y.; Qian, X. F. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. J. Mater. Chem. A 2018, 6, 21098–21103.

    Article  CAS  Google Scholar 

  65. Chen, M.; Zhou, Q. N.; Iqbal, A.; Liu, X. J.; Nazakat, A.; Yan, C. Y.; Tian, H.; Li, W. Q.; Zhang, Y. C.; Dong, B. X.; Zai, J. T.; Qian, X. F. Self-supported NaTi2(PO4)3 nanorod arrays: Balancing Na+ and electron kinetics via optimized carbon coating for high-power sodium-ion capacitor. ACS Appl. Mater. Interfaces 2020, 12, 50388–50396.

    Article  CAS  Google Scholar 

  66. Chen, M.; Zhou, Q. N.; Zai, J. T.; Iqbal, A.; Tsega, T. T.; Dong, B. X.; Liu, X. J.; Zhang, Y. C.; Yan, C. Y.; Zhao, L. et al. High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics. Nano Res. 2021, 14, 1004–1011.

    Article  CAS  Google Scholar 

  67. Zhao, K. N.; Zhang, L.; Xia, R.; Dong, Y. F.; Xu, W. W.; Niu, C. J.; He, L.; Yan, M. Y.; Qu, L. B.; Mai, L. Q. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588–594.

    Article  CAS  Google Scholar 

  68. Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

    Article  CAS  Google Scholar 

  69. Yi, Z. B.; Liu, Y.; Li, Y. Z.; Zhou, L. J.; Wang, Z. Y.; Zhang, J. Q.; Cheng, H.; Lu, Z. G. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high-performance anode for potassium-ion batteries. Small 2020, 16, 1905301.

    Article  CAS  Google Scholar 

  70. Fan, B. B.; Yan, J. X.; Hu, A. P.; Liu, Z.; Li, W. Z.; Li, Y. H.; Xu, Y. L.; Zhang, Y.; Tang, Q. L.; Chen, X. H. et al. High-performance potassium ion capacitors enabled by hierarchical porous, large interlayer spacing, active site rich-nitrogen, and sulfur Co-doped carbon. Carbon 2020, 164, 1–11.

    Article  CAS  Google Scholar 

  71. Bai, J.; Xi, B. J.; Mao, H. Z.; Lin, Y.; Ma, X. J.; Feng, J. K.; Xiong, S. L. One-step construction of N,P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv. Mater. 2018, 30, 1802310.

    Article  Google Scholar 

  72. Liu, M. Q.; Chang, L. M.; Wang, J.; Li, J. H.; Jiang, J. M.; Pang, G.; Wang, H. R.; Nie, P.; Zhao, C. M.; Xu, T. H. et al. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J. Power Sources 2020, 469, 228415.

    Article  CAS  Google Scholar 

  73. Chandra, M.; Khan, T. S.; Shukla, R.; Ahamad, S.; Gupta, A.; Basu, S.; Haider, M. A.; Dhaka, R. S. Diffusion coefficient and electrochemical performance of NaVO3 anode in Li/Na batteries. Electrochim. Acta 2020, 331, 135293.

    Article  CAS  Google Scholar 

  74. Wu, X. B.; Qin, N.; Wang, F.; Li, Z. H.; Qin, J. Y.; Huang, G. J.; Wang, D. H.; Liu, P.; Yao, Q. R.; Lu, Z. G. et al. Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries. Energy Storage Mater. 2021, 37, 619–627.

    Article  Google Scholar 

  75. Wang, M. S.; Peng, A. M.; Xu, H.; Yang, Z. L.; Zhang, L.; Zhang, J.; Yang, H.; Chen, J. C.; Huang, Y.; Li, X. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. J. Power Sources 2020, 469, 228414.

    Article  CAS  Google Scholar 

  76. Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

    Article  CAS  Google Scholar 

  77. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 51661009 and 21875097), the Natural Science Foundation of Guangxi Province (No. 2019GXNSFDA245014), the Science and Technology Base and Talent Special Project of Guangxi Province (No. AD19245162), and the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20200109141640095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liu, Zhouguang Lu or Jianqiu Deng.

Electronic Supplementary Material

12274_2021_3462_MOESM1_ESM.pdf

FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Gan, Q., Zhang, Y. et al. FeSb@N-doped carbon quantum dots anchored in 3D porous N-doped carbon with pseudocapacitance effect enabling fast and ultrastable potassium storage. Nano Res. 15, 217–224 (2022). https://doi.org/10.1007/s12274-021-3462-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3462-4

Keywords

Navigation