Skip to main content

Advertisement

Log in

FeS quantum dots as an ultrastable host material for potassium-ion intercalation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Potassium-ion battery (PIB) is a potential candidate for future large-scale energy storage devices. Constructing electrode materials with fast ions and electron transport channels is an effective solution to achieve high-power-density and long-cycle PIBs. Herein, the composite composed of FeS quantum dots and nitrogen-doped porous carbon (FeS@NPC) is reported as anode material for PIBs. The unique uniform nanostructure is confirmed to be able to reduce the ion diffusion length, increase the migration rate of potassium ions, improve electronic conductivity, and alleviate volume fluctuation. These advantages deliver enhanced potassium storage properties with high capacity and excellent cycling stability. FeS@NPC-based anode obtains a specific capacity of 224 mAh g−1 at 1 A g−1 and 180 mAh g−1 at 5 A g−1 even after 1200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu M, Wang Y, Wu F, Bai Y, Li Y, Gong Y, Feng X, Li Y, Wang X, Wu C (2022) Advances in carbon materials for sodium and potassium storage. Adv Funct Mater 32(31) 

  2. Xu YS, Guo SJ, Tao XS, Sun YG, Ma J, Liu C, Cao AM (2021) High-performance cathode materials for potassium-ion batteries: structural design and electrochemical properties. Adv Mater 33(36):e2100409

    Article  PubMed  Google Scholar 

  3. Rajagopalan R, Tang Y, Ji X, Jia C, Wang H (2020) Advancements and challenges in potassium ion batteries: a comprehensive review. Adv Funct Mater 30(12)

  4. Wu Y, Huang HB, Feng Y, Wu ZS, Yu Y (2019) The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv Mater 31(50):e1901414

    Article  PubMed  Google Scholar 

  5. Zhao R, Di H, Hui X, Zhao D, Wang R, Wang C, Yin L (2021) Correction: self-assembled Ti3C2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries. Energy Environ Sci 14(9):5096–5096

    Article  Google Scholar 

  6. Zhang W, Liu Y, Guo Z (2019) Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 5(5):eaav7412

  7. Liu J, Yin T, Tian B, Zhang B, Qian C, Wang Z, Zhang L, Liang P, Chen Z, Yan J, Fan X, Lin J, Chen X, Huang Y, Loh KP, Shen ZX (2019) Unraveling the potassium storage mechanism in graphite foam. Adv Energy Mater 9(22):1900579

    Article  Google Scholar 

  8. Zhang W, Mao J, Li S, Chen Z, Guo Z (2017) Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 139(9):3316–3319

    Article  CAS  PubMed  Google Scholar 

  9. Liu G, Yang Y, Lu X, Qi F, Liang Y, Trukhanov A, Wu Y, Sun Z, Lu X (2022) Fully active bimetallic phosphide Zn0.5Ge0.5P: a novel high-performance anode for Na-ion batteries coupled with diglyme-based electrolyte, ACS Appl Mater Interfaces 14(28):31803–31813

  10. Liang Y, Chen Y, Ke X, Zhang Z, Wu W, Lin G, Zhou Z, Shi Z (2020) Coupling of triporosity and strong Au–Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes. J Mater Chem A 8(35):18094–18105

    Article  CAS  Google Scholar 

  11. Liu G, Wang N, Qi F, Lu X, Liang Y, Sun Z (2023) Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg Chem Front 10(2):699–711

    Article  CAS  Google Scholar 

  12. Gao H, Zhou T, Zheng Y, Zhang Q, Liu Y, Chen J, Liu H, Guo Z (2017) CoS quantum dot nanoclusters for high‐energy potassium‐ion batteries. Adv Funct Mater 27(43)

  13. Chen B, Ding J, Bai X, Zhang H, Liang M, Zhu S, Shi C, Ma L, Liu E, Zhao N, He F, Zhou W, He C (2021) Engineering pocket‐like graphene–shell encapsulated FeS2: inhibiting polysulfides shuttle effect in potassium‐ion batteries. Adv Funct Mater 32(14)

  14. Zhang S, Wang G, Wang B, Wang J, Bai J, Wang H (2020) 3D carbon nanotube network bridged hetero‐structured Ni‐Fe‐S nanocubes toward high‐performance lithium, sodium, and potassium storage. Adv Funct Mater 30(24)

  15. Cao K, Zheng R, Wang S, Shu J, Liu X, Liu H, Huang KJ, Jing QS, Jiao L (2020) Boosting coulombic efficiency of conversion‐reaction anodes for potassium‐ion batteries via confinement effect. Adv Funct Mater 30(52)

  16. Wei X, Li W, Shi JA, Gu L, Yu Y (2015) FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl Mater Interfaces 7(50):27804–27809

    Article  CAS  PubMed  Google Scholar 

  17. Chen Z, Wu R, Liu M, Wang H, Xu H, Guo Y, Song Y, Fang F, Yu X, Sun D (2017) General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv Funct Mater 27(38) 

  18. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217):1246501

  19. Zhang E, Jia X, Wang B, Wang J, Yu X, Lu B (2020) Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv Sci (Weinh) 7(15):2000470

  20. Xiao Y, Sun P, Cao M (2014) Core–shell bimetallic carbide nanoparticles confined in a three-dimensional N-doped carbon conductive network for efficient lithium storage. ACS Nano 8(8):7846–7857

    Article  CAS  PubMed  Google Scholar 

  21. Yan Z, Liu J, Wei H, Yang X, Yao Y, Huang Z, Li H, Kuang Y, Ma J, Zhou H (2021) Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries. J Colloid Interface Sci 593:408–416

    Article  CAS  PubMed  Google Scholar 

  22. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    Article  CAS  PubMed  Google Scholar 

  23. Gu J, Du Z, Zhang C, Yang S (2016) Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv Energy Mater 6(18):1600917

    Article  Google Scholar 

  24. Xu Z, Zhuang X, Yang C, Cao J, Yao Z, Tang Y, Jiang J, Wu D, Feng X (2016) Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv Mater 28(10):1981–1987

    Article  CAS  PubMed  Google Scholar 

  25. Feng W, Feng N, Liu W, Cui Y, Chen C, Dong T, Liu S, Deng W, Wang H, Jin Y (2021) Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance. Adv Energy Mater 11(4):2003215

    Article  CAS  Google Scholar 

  26. Zhang W, Yin J, Sun M, Wang W, Chen C, Altunkaya M, Emwas AH, Han Y, Schwingenschlogl U, Alshareef HN (2020) Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv Mater 32(25):e2000732

    Article  PubMed  Google Scholar 

  27. Yang W, Zhou J, Wang S, Wang Z, Lv F, Zhang W, Zhang W, Sun Q, Guo S (2020) A three-dimensional carbon framework constructed by N/S Co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett 5(5):1653–1661

    Article  CAS  Google Scholar 

  28. Huang R, Zhang X, Qu Z, Zhang X, Lin J, Wu F, Chen R, Li L (2022) Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. J Mater Chem A 10(2):682–689

    Article  CAS  Google Scholar 

  29. Liu Y, Zhong W, Yang C, Pan Q, Li Y, Wang G, Zheng F, Xiong X, Liu M, Zhang Q (2018) Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J Mater Chem A 6(48):24702–24708

    Article  CAS  Google Scholar 

  30. Cui Y, Feng W, Wang D, Wang Y, Liu W, Wang H, Jin Y, Yan Y, Hu H, Wu M, Xue Q, Yan Z, Xing W (2021) Water-soluble salt template-assisted anchor of hollow FeS2 nanoparticle inside 3D carbon skeleton to achieve fast potassium-ion storage. Adv Energy Mater 11(33):2101343

    Article  CAS  Google Scholar 

  31. Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z (2017) In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high‐performance sodium‐ion batteries. Adv Funct Mater 27(41)

  32. Chu K, Zhang X, Yang Y, Li Z, Wei L, Yao G, Zheng F, Chen Q (2021) Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon 184:277–286

    Article  CAS  Google Scholar 

  33. Xu S, Li Z, Chu K, Yao G, Xu Y, Niu P, Yang Y, Chen Q, Zheng F (2021) Construction of NiS nanosheets anchored on the inner surface of nitrogen-doped hollow carbon matrixes with enhanced sodium and potassium storage performances. ACS Appl Energy Mater 4(1):662–670

    Article  CAS  Google Scholar 

  34. Cui Y, Liu W, Wang X, Li J, Zhang Y, Du Y, Liu S, Wang H, Feng W, Chen M (2019) Bioinspired mineralization under freezing conditions: an approach to fabricate porous carbons with complicated architecture and superior K(+) storage performance. ACS Nano 13(10):11582–11592

    Article  CAS  PubMed  Google Scholar 

  35. Wang B, Zhang Z, Yuan F, Zhang D, Wang Q, Li W, Li Z, Wu YA, Wang W (2022) An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem Eng J 428:131093

    Article  CAS  Google Scholar 

  36. Bai J, Xi B, Mao H, Lin Y, Ma X, Feng J, Xiong S (2018) One-step construction of N, P-codoped porous carbon sheets/CoP hybrids with enhanced lithium and potassium storage. Adv Mater 30(35):e1802310

    Article  PubMed  Google Scholar 

  37. Zhao W, Xu X, Wang L, Liu Y, Zhou T, Zhang S, Hu J, Jiang Q (2022) Boosting lifespan of conversion-reaction anodes for full/half potassium-ion batteries via multi-dimensional carbon nano-architectures confinement effect. J Energy Chem 75:55–65

    CAS  Google Scholar 

  38. Wang Z, Dong K, Wang D, Luo S, Liu Y, Wang Q, Zhang Y, Hao A, Shi C, Zhao N (2019) A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A 7(23):14309–14318

    Article  CAS  Google Scholar 

  39. Wang W, Zhou J, Wang Z, Zhao L, Li P, Yang Y, Yang C, Huang H, Guo S (2018) Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv Energy Mater 8(5):1701648

    Article  Google Scholar 

  40. Zhang H, Luo C, He H, Wu HH, Zhang L, Zhang Q, Wang H, Wang MS (2020) Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries. Nanoscale Horiz 5(5):895–903

    Article  CAS  PubMed  Google Scholar 

  41. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9(2):146–151

    Article  CAS  PubMed  Google Scholar 

  42. Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun 7:12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (grant nos. 52274298, 21908049, and 51974114), China Postdoctoral Science Foundation (2020M682560), the Science and Technology Innovation Program of Hunan Province (2020RC2024), Hunan Provincial Natural Science Foundation of China (grant nos. 2020JJ4175 and 2022JJ40035), and the Chinese Universities Scientific Fund (no. 15052001).

Author information

Authors and Affiliations

Authors

Contributions

Yongkang He: conceptualization; synthesis; investigation; analysis; writing—original draft. Xuying Liu: synthesis; analysis; writing—original draft and revision work. Shuai Wang: synthesis. Jiexing Wu: analysis. Chenxi Xu: analysis. Mengxue Cao: investigation. Weiming Cai: analysis. Haihui Zhou: supervision, funding acquisition; writing—reviewing and editing. Yafei Kuang: writing—reviewing. Zhongyuan Huang: supervision, funding acquisition; writing—reviewing and editing.

Corresponding authors

Correspondence to Haihui Zhou or Zhongyuan Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yongkang He and Xuying Liu contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Liu, X., Wang, S. et al. FeS quantum dots as an ultrastable host material for potassium-ion intercalation. J Solid State Electrochem 28, 49–59 (2024). https://doi.org/10.1007/s10008-023-05642-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05642-3

Keywords

Navigation