Skip to main content
Log in

Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rational design and construction of hierarchically porous nanostructure for oxygen reduction reaction (ORR) electrocatalysts is crucial to facilitate the exposure of accessible active sites and promote the mass/electron transfer under the gas-solid-liquid triple-phase condition. Herein, an ingenious method through the pyrolysis of creative polyvinylimidazole coordination with Zn/Fe salt precursors is developed to fabricate hierarchically porous Fe-N-doped carbon framework as efficient ORR electrocatalyst. The volatilization of Zn species combined with the nanoscale Kirkendall effect of Fe dopants during the pyrolysis build the hierarchical micro-, meso-, and macroporous nanostructure with a high specific surface area (1,586 m2·g−1), which provide sufficient exposed active sites and multiscale mass/charge transport channels. The optimized electrocatalyst exhibits superior ORR activity and robust stability in both alkaline and acidic electrolytes. The Zn-air battery fabricated by such attractive electrocatalyst as air cathode displays a higher peak power density than that of Pt/C-based Zn-air battery, suggesting the great potential of this electrocatalyst for Zn-air batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

    Article  Google Scholar 

  2. Wang, X. D.; Fang, J. J.; Liu, X. R.; Zhang, X. Q.; Lv, Q. Q.; Xu, Z. X.; Zhang, X. J.; Zhu, W.; Zhuang, Z. B. Converting biomass into efficient oxygen reduction reaction catalysts for proton exchange membrane fuel cells. Sci. China Mater. 2020, 63, 524–532.

    Article  CAS  Google Scholar 

  3. Zhang, M. D.; Dai, Q. B.; Zheng, H. G.; Chen, M. D.; Dai, L. M. Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 2018, 30, 1705431.

    Article  Google Scholar 

  4. Meng, Z. H.; Cai, S. C.; Wang, R.; Tang, H. L.; Song, S. Q.; Tsiakaras, P. Bimetallic–organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Appl. Catal. B: Environ. 2019, 244, 120–127.

    Article  CAS  Google Scholar 

  5. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  6. Tang, H. L.; Zeng, Y.; Liu, D.; Qu, D. Y.; Luo, J. S.; Binnemans, K.; De Vos, D. E.; Fransaer, J.; Qu, D. Y.; Sun, S. G. Dual-doped mesoporous carbon synthesized by a novel nanocasting method with superior catalytic activity for oxygen reduction. Nano Energy 2016, 26, 131–138.

    Article  CAS  Google Scholar 

  7. Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. C. ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

    Article  CAS  Google Scholar 

  8. Su, C.; Liu, Y.; Luo, Z. X.; Veder, J. P.; Zhong, Y. J.; Jiang, S. P.; Shao, Z. P. Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chem. Eng. J. 2021, 406, 126883.

    Article  CAS  Google Scholar 

  9. Hu, X.; Min, Y.; Ma, L. L.; Lu, J. Y.; Li, H. C.; Liu, W. J.; Chen, J. J.; Yu, H. Q. Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Appl. Catal. B: Environ. 2020, 268, 118405.

    Article  CAS  Google Scholar 

  10. Cao, K. W.; Huang, H.; Li, F. M.; Yao, H. C.; Bai, J.; Chen, P.; Jin, P. J.; Deng, Z. W.; Zeng, J. H.; Chen, Y. Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels for electrocatalytic oxygen reduction. J. Colloid Interface Sci. 2020, 559, 143–151.

    Article  CAS  Google Scholar 

  11. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    Article  Google Scholar 

  12. Dun, R. M.; Hao, M. G.; Su, Y. M.; Li, W. M. Fe-N-doped hierarchical mesoporous carbon nanomaterials as efficient catalysts for oxygen reduction in both acidic and alkaline media. J. Mater. Chem. A 2019, 7, 12518–12525.

    Article  CAS  Google Scholar 

  13. Xing, R. H.; Zhou, T. S.; Zhou, Y.; Ma, R. G.; Liu, Q.; Luo, J.; Wang, J. C. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction. Nano-Micro Lett. 2018, 10, 3.

    Article  Google Scholar 

  14. Ou, H. H.; Wang, D. S.; Li, Y. D. How to select effective electrocatalysts: Nano or single atom? Nano Select, in press, DOI: https://doi.org/10.1002/nano.202000239.

  15. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  16. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    Article  CAS  Google Scholar 

  17. Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. MOF-derived 3D Fe-N-S co-doped carbon matrix/nanotube nanocomposites with advanced oxygen reduction activity and stability in both acidic and alkaline media. Appl. Catal. B: Environ. 2019, 250, 143–149.

    Article  CAS  Google Scholar 

  18. She, Y. Y.; Liu, J.; Wang, H. K.; Li, L.; Zhou, J. S.; Leung, M. K. H. Bubble-like Fe-encapsulated N, S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. Nano Res. 2020, 13, 2175–2182.

    Article  Google Scholar 

  19. Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

    Article  CAS  Google Scholar 

  20. Zhong, R. Q.; Wu, Y. X.; Liang, Z. B.; Guo, W. H.; Zhi, C. X.; Qu, C.; Gao, S.; Zhu, B. J.; Zhang, H.; Zou, R. Q. Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon 2019, 142, 115–122.

    Article  CAS  Google Scholar 

  21. Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

    Article  CAS  Google Scholar 

  22. You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. Bimetal–organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068–7076.

    Article  CAS  Google Scholar 

  23. Wang, M.; Zhan, H. X.; Thirunavukkarasu, G.; Salam, I.; Varcoe, J. R.; Mardle, P.; Li, X. Y.; Mu, S. C.; Du, S. F. Ionic liquid-modified microporous ZnCoNC-based electrocatalysts for polymer electrolyte fuel cells. ACS Energy Lett. 2019, 4, 2104–2110.

    Article  CAS  Google Scholar 

  24. Kwak, D. H.; Han, S. B.; Kim, D. H.; Park, J. Y.; Ma, K. B.; Won, J. E.; Kim, M. C.; Moon, S. H.; Park, K. W. Investigation of the durability of Fe/N-doped mesoporous carbon nanostructure as a non-precious metal catalyst for oxygen reduction reaction in acid medium. Carbon 2018, 140, 189–200.

    Article  CAS  Google Scholar 

  25. Lee, S. H.; Kim, J.; Chung, D. Y.; Yoo, J. M.; Lee, H. S.; Kim, M. J.; Mun, B. S.; Kwon, S. G.; Sung, Y. E.; Hyeon, T. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures? J. Am. Chem. Soc. 2019, 141, 2035–2045.

    Article  CAS  Google Scholar 

  26. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    Article  CAS  Google Scholar 

  27. Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. G.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

    Article  CAS  Google Scholar 

  28. Wu, R.; Song, Y. J.; Huang, X.; Chen, S. G.; Ibraheem, S.; Deng, J. H.; Li, J.; Qi, X. Q.; Wei, Z. D. High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells. J. Power Sources 2018, 401, 287–295.

    Article  CAS  Google Scholar 

  29. Sun, T. T.; Xu, L. B.; Li, S. Y.; Chai, W. X.; Huang, Y.; Yan, Y. S.; Chen, J. F. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Appl. Catal. B: Environ. 2016, 193, 1–8.

    Article  CAS  Google Scholar 

  30. Koo, J.; Hwang, I. C.; Yu, X. J.; Saha, S.; Kim, Y.; Kim, K. Hollowing out MOFs: Hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chem. Sci. 2017, 8, 6799–6803.

    Article  CAS  Google Scholar 

  31. Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng, X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.

    Article  CAS  Google Scholar 

  32. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  CAS  Google Scholar 

  33. Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem. Mater. 2017, 29, 26–39.

    Article  CAS  Google Scholar 

  34. Qiao, X. C.; Peng, H. L.; You, C. H.; Liu, F. F.; Zheng, R. P.; Xu, D. W.; Li, X. H.; Liao, S. J. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. J. Power Sources 2015, 288, 253–260.

    Article  CAS  Google Scholar 

  35. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  36. Chen, X.; Ma, D. D.; Chen, B.; Zhang, K. X.; Zou, R. Q.; Wu, X. T.; Zhu, Q. L. Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–Nx active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B: Environ. 2020, 267, 118720.

    Article  CAS  Google Scholar 

  37. Deng, Y. J.; Chi, B.; Li, J.; Wang, G. H.; Zheng, L.; Shi, X. D.; Cui, Z. M.; Du, L.; Liao, S. J.; Zang, K. T. et al. Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater. 2019, 9, 1802856.

    Article  Google Scholar 

  38. Wang, X.; Meng, Q. L.; Gao, L. Q.; Liu, J.; Ge, J. J.; Liu, C. P.; Xing, W. Metal organic framework derived nitrogen-doped carbon anchored palladium nanoparticles for ambient temperature formic acid decomposition. Int. J. Hydrogen Energy 2019, 44, 28402–28408.

    Article  CAS  Google Scholar 

  39. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

    Article  CAS  Google Scholar 

  40. Li, S. H.; Lafon, O.; Wang, W. Y.; Wang, Q.; Wang, X. X.; Li, Y.; Xu, J.; Deng, F. Recent advances of solid-state NMR spectroscopy for microporous materials. Adv. Mater. 2020, 32, 2002879.

    Article  CAS  Google Scholar 

  41. Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

    Article  CAS  Google Scholar 

  42. Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/CoS/Metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.

    Article  CAS  Google Scholar 

  43. Li, H.; Liu, D.; Zhu, X. X.; Qu, D. Y.; Xie, Z. Z.; Li, J. S.; Tang, H. L.; Zheng, D.; Qu, D. Y. Integrated 3D electrodes based on metal-nitrogen-doped graphitic ordered mesoporous carbon and carbon paper for high-loading lithium-sulfur batteries. Nano Energy 2020, 73, 104763.

    Article  CAS  Google Scholar 

  44. Wang, S. H.; Yan, X.; Wu, K. H.; Chen, X. M.; Feng, J. M.; Lu, P. Y.; Feng, H.; Cheng, H. M.; Liang, J.; Dou, S. X. A hierarchical porous Fe-N impregnated carbon-graphene hybrid for high-performance oxygen reduction reaction. Carbon 2019, 144, 798–804.

    Article  CAS  Google Scholar 

  45. Chen, Y. M.; Wang, H.; Liu, F. S.; Gai, H. J.; Ji, S.; Linkov, V.; Wang, R. F. Hydrophobic 3D Fe/N/S doped graphene network as oxygen electrocatalyst to achieve unique performance of zinc-air battery. Chem. Eng. J. 2018, 353, 472–480.

    Article  CAS  Google Scholar 

  46. Hu, B. C.; Wu, Z. Y.; Chu, S. Q.; Zhu, H. W.; Liang, H. W.; Zhang, J.; Yu, S. H. SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11, 2208–2215.

    Article  CAS  Google Scholar 

  47. Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651–1657.

    Article  CAS  Google Scholar 

  48. Jin, H. H.; Zhou, H.; Li, W. Q.; Wang, Z. H.; Yang, J. L.; Xiong, Y. L.; He, D. P.; Chen, L.; Mu, S. C. In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2018, 6, 20093–20099.

    Article  CAS  Google Scholar 

  49. Liu, Z.; Sun, F.; Gu, L.; Chen, G.; Shang, T. T.; Liu, J.; Le, Z. Y.; Li, X. Y.; Wu, H. B.; Lu, Y. F. Post iron decoration of mesoporous nitrogen-doped carbon spheres for efficient electrochemical oxygen reduction. Adv. Energy Mater. 2017, 7, 1701154.

    Article  Google Scholar 

  50. Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Tian, G. Y.; Schmidt, J.; Thomas, A. Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 2019, 31, 3274–3280.

    Article  CAS  Google Scholar 

  51. Cheng, C.; Li, S.; Xia, Y.; Ma, L.; Nie, C.; Roth, C.; Thomas, A.; Haag, R. Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries. Adv. Mater. 2018, 30, 1802669.

    Article  Google Scholar 

  52. Zeng, H. J.; Wang, W.; Li, J.; Luo, J.; Chen, S. L. In situ generated dual-template method for Fe/N/S Co-doped hierarchically porous honeycomb carbon for high-performance oxygen reduction. ACS Appl. Mater. Interfaces 2018, 10, 8721–8729.

    Article  CAS  Google Scholar 

  53. Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed. 2018, 57, 1856–1862.

    Article  CAS  Google Scholar 

  54. Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

    Article  Google Scholar 

  55. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  56. Lai, Q. X.; Zhu, J. J.; Zhao, Y. X.; Liang, Y. Y.; He, J. P.; Chen, J. H. MOF-based metal-doping-induced synthesis of hierarchical porous Cu-N/C oxygen reduction electrocatalysts for Zn-air batteries. Small 2017, 13, 1700740.

    Article  Google Scholar 

  57. Liu, G. H.; Li, J. D.; Fu, J.; Jiang, G. P.; Lui, G.; Luo, D.; Deng, Y. P.; Zhang, J.; Cano, Z. P.; Yu, A. P. et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 2019, 31, 1806761.

    Article  Google Scholar 

  58. Lv, Q.; Si, W. Y.; He, J. J.; Sun, L.; Zhang, C. F.; Wang, N.; Yang, Z.; Li, X. D.; Wang, X.; Deng, W. Q. et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat. Commun. 2018, 9, 3376.

    Article  Google Scholar 

  59. Liang, Z. Z.; Fan, X.; Lei, H. T.; Qi, J.; Li, Y. Y.; Gao, J. P.; Huo, M. L.; Yuan, H. T.; Zhang, W.; Lin, H. P. et al. Cobalt-nitrogen-doped helical carbonaceous nanotubes as a class of efficient electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 13187–13191.

    Article  CAS  Google Scholar 

  60. Wang, M.; Zhang, C. T.; Meng, T.; Pu, Z. H.; Jin, H. H.; He, D. P.; Zhang, J. N.; Mu, S. C. Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J. Power Sources 2019, 413, 367–375.

    Article  CAS  Google Scholar 

  61. van Tam, T.; Kang, S. G; Kim, M. H.; Lee, S. G.; Hur, S. H.; Chung, J. S.; Choi, W. M. Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 2019, 9, 1900945.

    Google Scholar 

  62. Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51976143); the National Key Research and Development Program of China (No. 2018YFA0702001); and Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No. XHD2020-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian Tian or Haolin Tang.

Electronic supplementary material

12274_2021_3422_MOESM1_ESM.pdf

Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Z., Chen, N., Cai, S. et al. Rational design of hierarchically porous Fe-N-doped carbon as efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 14, 4768–4775 (2021). https://doi.org/10.1007/s12274-021-3422-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3422-z

Keywords

Navigation