Skip to main content
Log in

Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives for next-generation battery systems, which have promising application potential due to their earth abundance of potassium and sodium, high capacity and suitable working potential, however, the design and application of bi-functional high-performance anode still remain a great challenge up to date. Bismuth sulfide is suitable as anode owing to its unique laminar structure with relatively large interlayer distance to accommodate larger radius ions, high theoretical capacity and high volumetric capacity etc. In this study, dandelion-like Bi2S3/rGO hierarchical microspheres as anode material for PIBs displayed reversible capacity, and 206.91 mAh·g−1 could be remained after 1,200 cycles at a current density of 100 mA·g−1. When applied as anode materials for SIBs, 300 mAh·g−1 could be retained after 300 cycles at 2 A·g−1 and its initial Coulombic efficiency is as high as 97.43%. Even at high current density of 10 A·g−1, 120.3 mAh·g−1 could be preserved after 3,400 cycles. The Na3V2(PO4)3@rGO//Bi2S3/rGO sodium ion full cells were successfully assembled which displays stable performance after 60 cycles at 100 mA·g−1. The above results demonstrate that Bi2S3/rGO has application potential as high performance bi-functional anode for PIBs and SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.

    Article  CAS  Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  3. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  4. Wang, N. N.; Chu, C. X.; Xu, X.; Du, Y.; Yang, J.; Bai, Z. C.; Dou, S. X. Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+, K+) ion batteries. Adv. Energy Mater. 2018, 8, 1801888.

    Article  Google Scholar 

  5. Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

    Article  Google Scholar 

  6. Chen, Q.; Sun, S.; Zhai, T.; Yang, M.; Zhao, X. Y.; Xia, H. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery. Adv. Energy Mater. 2018, 8, 1800054.

    Article  Google Scholar 

  7. Mao, J. F; Zhou, T. F.; Zheng, Y.; Gao, H. K.; Liu, H. K.; Guo, Z. P. Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 2018, 6, 3284–3303.

    Article  CAS  Google Scholar 

  8. Zhang, Q.; Didier, C.; Pang, W. K.; Liu, Y. J.; Wang, Z. J.; Li, S.; Peterson, V. K.; Mao, J. F; Guo, Z. P. Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900568.

    Article  Google Scholar 

  9. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  10. Dong, C. F.; Liang, J. W.; He, Y. Y.; Li, C. C.; Chen, X. X.; Guo, L. J.; Tian, F.; Qian, Y. T.; Xu, L. Q. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries. ACS Nano 2018, 12, 8277–8287.

    Article  CAS  Google Scholar 

  11. He, Y. Y.; Luo, M.; Dong, C. F.; Ding, X. Y.; Yin, C. C.; Nie, A. M.; Chen, Y. N.; Qian, Y. T.; Xu, L. Q. Coral-like Nx,Co1−x,Se2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability. J. Mater. Chem. A 2019, 7, 3933–3940.

    Article  CAS  Google Scholar 

  12. He, Y. Y.; Wang, L.; Dong, C. F.; Li, C. C.; Ding, X. Y.; Qian, Y. T.; Xu, L. Q. In-situ rooting ZnSe/N-doped hollow Carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 23, 35–45.

    Article  Google Scholar 

  13. Dong, C. F.; Guo, L. J.; He, Y. Y.; Chen, C. J.; Qian, Y. T.; Chen, Y. N.; Xu, L. Q. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Mater. 2018, 15, 234–241.

    Article  Google Scholar 

  14. Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.

    Article  Google Scholar 

  15. Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

    Article  CAS  Google Scholar 

  16. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  17. Sonia, F. J.; Jangid, M. K.; Aslam, M.; Johari, P.; Mukhopadhyay, A. Enhanced and faster potassium storage in graphene with respect to graphite: A comparative study with lithium storage. ACS Nano. 2019, 13, 2190–2204.

    CAS  Google Scholar 

  18. Guo, Q. B.; Ma, Y. F.; Chen, T. T.; Xia, Q. Y.; Yang, M.; Xia, H.; Yu, Y. Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries. ACS Nano. 2017, 11, 12658–12667.

    Article  CAS  Google Scholar 

  19. Fang, Y. J.; Yu, X. Y.; Lou, X. W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.

    Article  Google Scholar 

  20. Li, C. C; Liu, X. B.; Zhu, L.; Huang, R. Z.; Zhao, M. W.; Xu, L. Q; Qian, Y. T. Conductive and polar titanium boride as a sulfur host for advanced lithium-sulfur batteries. Chem. Mater. 2018, 30, 6969–6977.

    Article  CAS  Google Scholar 

  21. Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.

    Article  CAS  Google Scholar 

  22. Yang, J. L.; Ju, Z. C.; Jiang, Y.; Xing, Z.; Xi, B. J.; Feng, J. K.; Xiong, S. L. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 2018, 30, 1700104.

    Article  Google Scholar 

  23. Wu, J. X.; Zhang, Q.; Liu, S. L.; Long, J.; Wu, Z. B.; Zhang, W. C.; Pang, W. K.; Sencadas, V.; Song, R.; Song, W. L. et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 2020, 77, 105118.

    Article  CAS  Google Scholar 

  24. Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

    Article  Google Scholar 

  25. Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

    Article  CAS  Google Scholar 

  26. Liu, L.; Chen, Y.; Xie, Y. H.; Tao, P.; Li, Q. Y.; Yan, C. L. Understanding of the ultrastable K-ion storage of carbonaceous anode. Adv. Funct. Mater. 2018, 28, 1801989.

    Article  Google Scholar 

  27. Jiang, Y.; Wu, Y.; Chen, Y. X.; Qi, Z. Y.; Shi, J. A.; Gu, L.; Yu, Y. Design nitrogen (N) and sulfur (S) co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.

    Article  Google Scholar 

  28. Ma, Y. F.; Guo, Q. B.; Yang, M.; Wang, Y. H.; Chen, T. T.; Chen, Q.; Zhu, X. H.; Xia, Q. Y.; Li, S.; Xia, H. Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 2018, 13, 134–141.

    Article  Google Scholar 

  29. Liu, J. L.; Zhang, Y. Q.; Zhang, L.; Xie, F. X.; Vasileff, A.; Qiao, S. Z. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries. Adv. Mater. 2019, 31, 1901261.

    Article  Google Scholar 

  30. Mahmood, A.; Li, S.; Ali, Z.; Tabassum, H.; Zhu, B. J.; Liang, Z. B.; Meng, W.; Aftab, W.; Guo, W. H.; Zhang, H. et al. Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 2018, 31, 1805430.

    Article  Google Scholar 

  31. Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

    Article  Google Scholar 

  32. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

    Article  Google Scholar 

  33. Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

    Article  Google Scholar 

  34. Dai, R.; Wang, Y. H.; Da, P. M.; Wu, H.; Xu, M.; Zheng, G. F. Indirect growth of mesoporous Bi@C core-shell nanowires for enhanced lithium-ion storage. Nanoscale 2014, 6, 13236–13241.

    Article  CAS  Google Scholar 

  35. Ni, J. F.; Bi, X. X.; Jiang, Y.; Li, L.; Lu, J. Bismuth chalcogenide compounds Bi2X3 (X=O, S, Se): Applications in electrochemical energy storage. Nano Energy 2017, 34, 356–366.

    Article  CAS  Google Scholar 

  36. Luo, W.; Li, F.; Li, Q. D.; Wang, X. P.; Yang, W.; Zhou, L.; Mai, L. Q. Heterostructured Bi2S3-Bi2O3 nanosheets with a built-in electric field for improved sodium storage. ACS Appl. Mater. Interfaces 2018, 10, 7201–7207.

    Article  CAS  Google Scholar 

  37. Huang, J. Q.; Lin, X. Y.; Tan, H.; Zhang, B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv. Energy Mater. 2018, 8, 1703496.

    Article  Google Scholar 

  38. Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213–220.

    Article  CAS  Google Scholar 

  39. Kim, H.; Kim, D.; Lee, K.; Byun, D.; Kim, H. S.; Choi, W. Synthesis of Bi2S3/C yolk-shell composite based on sulfur impregnation for efficient sodium storage. Chem. Eng. J. 2020, 383, 123094.

    Article  CAS  Google Scholar 

  40. Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

    Article  Google Scholar 

  41. Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

    Article  CAS  Google Scholar 

  42. Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ. Sci. 2018, 11, 1218–1225.

    Article  CAS  Google Scholar 

  43. Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  CAS  Google Scholar 

  44. Huang, K. S.; Xing, Z.; Wang, L. C.; Wu, X.; Zhao, W.; Qi, X. J.; Wang, H.; Ju, Z. C. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J. Mater. Chem. A 2018, 6, 434–442.

    Article  CAS  Google Scholar 

  45. Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

    Article  CAS  Google Scholar 

  46. Zong, W.; Lai, F. L.; He, G. J.; Feng, J. R.; Wang, W.; Lian, R. Q.; Miao, Y. E.; Wang, G. C.; Parkin, I. P.; Liu, T. X. Sulfur-deficient bismuth sulfide/nitrogen-doped carbon nanofibers as advanced free-standing electrode for asymmetric supercapacitors. Small 2018, 14, 1801562.

    Article  Google Scholar 

  47. Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci. 2018, 9, 6193–6198.

    Article  CAS  Google Scholar 

  48. Liu, S. L; Mao, J. F; Zhang, Q.; Wang, Z. J; Pang, W. K.; Zhang, L.; Du, A. J; Sencadas, V.; Zhang, W. C; Guo, Z. P. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew. Chem., Int. Ed. 2020, 59, 3638–3644.

    Article  CAS  Google Scholar 

  49. Liu, S. L.; Mao, J. F.; Zhang, L.; Pang, W. K.; Du, A. J.; Guo, Z. P. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries. Adv. Mater. 2020, 33, 2006313.

    Article  Google Scholar 

  50. Zhang, Y.; Fan, L. S.; Wang, P. X.; Yin, Y. Y.; Zhang, X. Y.; Zhang, N. Q.; Sun, K. N. Coupled flower-like Bi2S3 and graphene aerogels for superior sodium storage performance. Nanoscale 2017, 9, 17694–17698.

    Article  CAS  Google Scholar 

  51. Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-Pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765–773.

    Article  CAS  Google Scholar 

  52. Xu, Y. N.; Wei, Q.; Xu, C.; Li, Q. D.; An, Q. Y.; Zhang, P. F.; Sheng, J. Z.; Zhou, L.; Mai, L. Q. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 2016, 6, 1600389.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Academy of Sciences large apparatus United Fund of China (No. U1832187), the National Nature Science Foundation of China (Nos. 22071135 and 21471091), the Nature Science Foundation of Shandong Province (No. ZR2019MEM030), the Taishan Scholar Project of Shandong Province (No. ts201511004), and the Fundamental Research Funds of Shandong University (No. 2018JC022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Xu.

Electronic supplementary material

12274_2021_3407_MOESM1_ESM.pdf

Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Wang, L., Li, C. et al. Dandelion-Like Bi2S3/rGO hierarchical microspheres as high-performance anodes for potassium-ion and half/full sodium-ion batteries. Nano Res. 14, 4696–4703 (2021). https://doi.org/10.1007/s12274-021-3407-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3407-y

Keywords

Navigation